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ABSTRACT

Methyl-CpG-binding protein 2 (MeCP2) is a gene important 
for brain function and is one of the most common causes 
in RTT (Rett syndrome) cases to encode a protein with 
the same name. This condition, which is more common in 
females and rare in men, is caused by the X chromosome 
and manifests itself as mental retardation. RTT develops 
normally in girls during their first 6 to 18 months of 
infancy, but the disease's symptoms spread over time. 
After a period, most RTT patients lose their mobility and 
are more prone to acquire Parkinson's disease (PD) as they 
age. RTT does not have a cure, although its symptoms can 
be controlled. The link of RTT with the MeCP2 gene as a 
significant neurological condition, as well as numerous 
treatment techniques explored, were discussed in this 
article.
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be sensitive to substances like cocaine, ethanol, 
and methamphetamine.[13-16]

Methyl-CpG-binding protein2 expression is 
linked to central nervous system (CNS) postnatal 
maturation and neuronal differentiation, and it 
is thought to play a role in CNS maintenance and 
function.[17] Methyl-CpG-binding protein 2 contains 
a lot of basic amino acids such lysine, arginine, 
proline, and serine. Methyl-CpG-binding protein 
2 is a proximal gene silencer with two functional 
domains: a methyl DNA binding domain (MBD) and 
a transcription repression domain (TRD), according 
to its description. Deacetylation of core histones is 
caused by interactions between this transcription 
repressor complex and chromatin-bound MeCP2, 
resulting in transcription suppression.[18,19]

MeThyl-CPG-BindinG PRoTein 2 
PhoSPhoRylATion in The BRAin

This gene can be present in all vertebrates, but not 
in fruit flies or earthworms, which are invertebrate 
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MeCP2 (MeThyl-CPG-BindinG PRoTein 2)
Methyl CpG binding protein 2 is a gene 

important for brain functions. MeCP2, a protein 
with the same name that is prevalent in neurons 
but expressed in different amounts in human 
tissue, is encoded by this gene.[1,2] This protein is 
a chromosomal protein that can bind methylated 
DNA via a methyl binding domain (MBD).[3-6] It 
has been found in the brain that the distribution 
and levels of MeCP2 are different. Recent studies 
have shown the distribution of MeCP2 in different 
regions of the mouse brain, particularly in the 
olfactory bulb, cortex, striatum, hippocampus, 
thalamus, cerebellum, and brain stem. The 
highest expression of MeCP2 was observed in 
the cortex and cerebellum with the analysis of all 
cell samples taken from these regions. Analysis 
of core extracts from the same brain regions also 
showed relatively equal levels of MeCP2E1 and 
different levels of MeCP2E2.[7,8] The expression 
of MeCP2, except for neurons, was also found in 
astrocytes, oligodendrocytes, and microglia.[7-12] 
Methyl-CpG-binding protein 2 has been found to 
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genetic model animals. To better understand the 
onset and severity of clinical symptoms, mouse 
models were used.[20,21] The researchers discovered 
a unique area on the MeCP2 protein termed 
serine-421 (S421) that acts as a trigger to activate 
MeCP2 during its regular function in mice trials. In 
response to neuronal activity, MeCP2 is activated 
by a process known as phosphorylation. Because 
MeCP2 selectively phosphorylates exclusively in the 
S421 region of the brain, mutations in the brain that 
impact the S421 region target brain development.[22]

The iMPACT of MeThyl-CPG-BindinG 
PRoTein 2 on oTheR GeneS And iTS 

RelATionShiP To ReTT SyndRoMe (RTT)
Researchers previously believed that the RTT 

gene was a "shut down" switch or a suppressor for 
other genes, however it has recently been shown 
that it is an "open" key for a startling number of 
genes. When the copy number of the MeCP2 gene 
is changed in mice, it influences the expression of 
many other genes, inhibiting some but activating 
many.[23] The MeCP2 gene regulates downstream 
too many genes, mutations or copying in this gene 
cause a change in the expression of genes in this 
downward direction. When the extra copy of MeCP2 
is deleted, these gene expression differences are 
likewise normalized.[3]

Mutations in MeCP2 account for 90% of typical 
RTT cases. CDKL5 and FOXG1 genes constitute 10% 
of the mutations that cause RTT. Autism spectrum 
disorder (ASD), intellectual disability, and lupus 
erythematosus (SLE) have all been linked to MeCP2 
mutations (butterfly disease).[24-29] This gene is 
linked to the X chromosome, and mutations in 
these genes, which are important for the proper 
functioning of neurons in the brain, cause RTT 
and affect one in 10,000 newborn girls. As a result, 
women with two X chromosomes are far more likely 
than men to develop RTT.[22,30] For this reason, it is 
striking that X-chromosome inactivation (XCI) is an 
interesting subject. XCI causes the brain to have an 
irregular expression of naturally type and mutant 
MeCP2 alleles. Although the obtained results seem 
complicated of the X-chromosome inactivation 
models (either skewed or random, whether the 
mutant allele is of paternal or maternal origin)  
was determined by these groups to be associated 
with RTT phenotypes.[31-33] Additional factors, such 
as epigenetic mechanisms and environmental 
modifiers, including other MeCP2-related genes, 
are thought to have an impact on RTT clinical 

severity because the association between XCI and 
clinical severity of RTT is unknown.[34,35] For the 
first six to 18 months of life, girls with RTT develop 
normally, but later lose motor skills and speech.  
By the age of four, irregular breathing and heart 
rhythm, as well as autistic-like symptoms, appear to 
be widespread.[22,30] Currently, there is no effective 
treatment for this disease, but its symptoms can be 
controlled.[36]

PRoGnoSiS of ReTT SyndRoMe And 
BehAvioRAl feATuReS

Most RTT phenotypes are associated with the 
brain and nervous system. It has been observed that 
the volume of specific brain regions, such as the 
cerebellum and cortex, is reduced in patients with 
RTT.[37-39]

The two main neurons in the brain are excitatory 
neurons that send signals to other neurons, 
and they are inhibitory neurons that control the 
activity of other neurons to control the timing 
and speed of information received. For the correct 
and controlled functioning of the brain, these 
neurons must behave in balance with one another; 
otherwise, defects may result in neurological 
illnesses. In an experiment in mice, it was observed 
that expressing MeCP2 only in inhibitory neurons 
extended lifespan and resolved most behavioral 
problems. In a second study published in this 
publication, it was discovered that removing MeCP2 
from solely excitatory neurons in mice triggered 
multiple Rett-like symptoms mediated by inhibitory 
neurons.[40] With the onset of developmental 
stagnation, acquired microcephaly is accompanied 
by general growth retardation, weight loss, and 
a poor posture brought on by muscle hypotonia, 
the muscle's resistance to movement. Irritability, 
social isolation, and a loss of language become 
more noticeable. The expressionless face is also 
associated with hypersensitivity to sound, lack 
of eye contact, apathy for the environment, 
and autistic characteristics.[41] Loss of motor 
coordination, ataxia, and the development of 
gait apraxia, or gait dysfunction, accompany the 
onset of mental impairment. Generally, RTT girls 
experience shortness of respiration and discomfort 
with respiratory abnormalities as a result of 
narrowing or obstruction of the upper respiratory 
tract during sleep such as breathing, aerophagia 
and another example of apnea.[42,43] The shortening 
of life expectancy and the increase in sudden 
death rates of people with this disorder have 
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been associated with cardiac dysrhythmias, that 
is, deterioration of heart rhythm.[44] The incidence 
of seizures ranging from readily controlled to den 
intractable epilepsy is one of the most difficult 
aspects of RTT, and the most prevalent varieties are 
partial complex and tonic-clonic seizures.[43]

Seizures tend to decrease in severity after 
adolescence and adulthood, and problems begin 
to appear after the patient is forty. Despite having 
a normal appetite, RTT patients continue to lose 
weight, and as they become older, they become 
uncomfortable with significant spinal curvature, 
such as osteopenia (a loss of bone density) and 
scoliosis. Behavioral abnormalities at this stage 
include braking teeth, laughing or crying at night, 
seizures of scream, low moods and anxiety episodes 
resulting in nuisance.[45-47]

In their teenage years, the majority of RTT 
patients lose their mobility and become wheelchair-
dependent, with an increased risk of getting PD at 
the same time.[48,49]

Early truncating mutations caused poor 
prognosis and late truncating and missense 
mutations caused classic RTT or preserved speech 
variant (PSV), and they have a later age when 
compared to the classic form.[50] As mention in a 
research, RTT has resulted in the classification of 
new RTT variant groups from the lower end of the 
phenotypic range spectrum to the more severe 
end. The classic and atypical RTT phenotypes 
differentiate in terms of onset and severity over 
time between different patients, even in the same 
patient.[50-52]

While it was once considered that RTT mainly 
affected women, this belief was disproved 
when men with classic RTT were identified.[53] 
In men, MeCP2 mutation was found to cause 
a range of neurological diseases from mental 
retardation to severe encephalopathy and typically 
caused neonatal encephalopathy and death in 
the first year of life.[54-57] RTT patient's emotions 
and behaviors undergo considerable shifts 
and abnormalities.[47,58,59] In these patients, an 
individual’s emotional state may be exacerbated 
by the observed physical challenges, for example, 
epileptic seizures, or crises, can cause an emotional 
increase and can lead to anxiety or tension.[59-61] 
They also believe that people's emotions and 
behaviors have evolved over time.[62] Behavioural 
disorders, increased stereotypes, constant shaking, 
itching, self-harm, or agitation can be manifested. 

Several studies have shown that sleep problems 
and emotional and behavioural disorders such as 
screaming in the early stages of RTT may be linked 
to the emergence of mental disability and diminish 
over time.[63-66]

TReATMenTS foR ReTT SyndRoMe
There is no known cure for RTT. It has been 

demonstrated that certain traits can be rescued 
in RTT mice models, providing hope to RTT 
patients.[67] Because of the scarcity of patients, it 
is difficult to investigate such complex disorders 
and improve treatment.[68] It is critical to determine 
the associative features of RTT so that they may be 
measured in clinical studies. Despite the fact that 
no conclusions are perfect, it would be beneficial to 
develop better tools for RTT intervention attempts. 
The development of the comprehensive web-based 
HealthTracker™ Rett evaluation of symptoms and 
treatments (REST) survey is a significant step forward 
in this field with objective measurements, such as 
biometric data.[69] A strategy of gene silencing, the 
treatment of antisense oligonucleotide (ASO) has 
been taken to be tested by the Zoghbi laboratory. 
Using it as a DNA template to produce an RNA 
molecule during transcription is the first of two 
crucial steps in protein production, transcription 
and translation. Second, an RNA molecule is formed 
when a protein is gathered and transported to a 
ribosome. ASO's synthetic nucleic acids bind to 
the RNA molecule and prevent it from reaching a 
ribosome, halting translation. In a study, ASO was 
injected directly into the brain using tiny osmotic 
pumps over a period of 4 weeks. Symptoms began 
to fade ten weeks after treatment began, and when 
treatment was terminated and MeCP2 protein levels 
rose, symptoms reverted.[3]

Depending on the mutation, the degree of X 
chromosome inactivation, and the presence of 
regulatory genes, the MeCP2 gene could change. 
Because RTT affects numerous organ systems, 
it was suggested that patients' healing should 
include a therapeutic combination, which is 
an important point to consider. Desipramine, a 
norepinephrine reuptake inhibitor, alleviated 
respiratory abnormalities and apnea in MeCP2 
mutant mice, but clinical trials in RTT patients 
treated with this medicine have not shown clinical 
development. Sarisotan, a serotonin1A agonist and 
dopamine D2 similar receptor, reduced respiratory 
apnea in MeCP2 mutant mice by 15-30% while 
having no effect on motor activity.[70-73]
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Gene therapy can also be used to transfer a 
normal copy of MeCP2 to cells as a treatment for 
RTT. This technique offered hope for the treatment 
of a wide range of illnesses. For example, on mouse 
models of hemophilia, Hunter's syndrome, diabetes, 
obesity, and more, successful results have been 
obtained in reversing symptoms.[74] Several therapy 
strategies for RTT are being developed, but none of 
them save the entire spectrum of RTT phenotypes. 
The researchers discovered that putting MeCP2 
into RTT mice models can help them restore their 
phenotypic.[74]

diSCuSSion-ConCluSion
Rett syndrome is more prevalent in women, 

however it has been discovered that it can happen 
to men with a low risk. It has been observed that 
RTT patients generally increase their symptoms 
and discomfort as they get older. The MeCP2 
gene mutation is a major factor in this illness. The 
expression of MeCP2 occurs in the brain, and it 
is of great importance in certain cell types of the 
brain. A notable step forward in this sector is the 
creation of a thorough REST survey. Rett syndrome 
symptoms can be regulated in mice, however there 
is no clear evidence on whether this will be decisive 
or effective in humans.

It is critical to understand that all of the 
treatments discussed in this study are effective for 
adult RTT patients. The next goal will be to turn 
the knowledge from animal models into human 
beings. Differences between mouse and human 
will challenge these studies and the translation of 
information.
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