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ABSTRACT

Diabetes mellitus (DM) is a widespread metabolic disease 
characterized by the disruption of blood glucose regulation, 
primarily caused by dysfunctional pancreatic beta (β)-cells. 
For the repair of β-cells, alternative approaches such as 
embryonic stem cells, mesenchymal stem cells, and induced 
pluripotent stem cells (iPSCs) are on the agenda due to 
the limitations of factors such as donor deficiency in islet 
cell transplantation treatment. It is aimed to produce real 
β-cells with the contributions of stem cell-based clinical 
studies conducted in recent years. In this chapter, stem 
cell transplantation is considered an alternative stem cell-
based therapy in diabetes for insulin independence through 
various means such as β-cell differentiation and β-cell 
repair. Current and traditional treatment methods applied 
in Type 1 diabetes and Type 2 diabetes are not sufficient 
to prevent the devastating damage of microvascular and 
macrovascular complications. For this reason, promising 
stem cell approaches have been discussed in DM as well 
as its complications. This chapter focuses on the curative 
potential of cells with excellent differentiation ability, such 
as embryonic, adult, and iPSCs, in DM and its complications, 
which despite the discovery of insulin remain fatal. 
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Glucose in the blood is regulated by beta (β)-cells 
secreted by the pancreas. Insulin plays a crucial role 
as a primary regulator of homeostasis since no other 
hormone is capable of reducing blood glucose levels. 
Diabetes mellitus (DM) is characterized by β-cell 
function loss, which leads to elevated blood glucose 
levels. The insulin-releasing pancreatic β-cells are 
destroyed or rendered ineffective, leading to DM. It 
is a metabolic condition that has spread worldwide. 
According to projections, it is estimated to reach 
552 million cases in 2030.[1] There are two primary 
types: type 1 diabetes mellitus (T1DM) and type 2 
diabetes mellitus (T2DM). The pathophysiology of 
T2DM comprises the development of resistance in 
insulin target tissues followed by β-cell malfunction 
due to a mix of genetic and environmental factors, 
in contrast to T1DM, which is defined by β-cell death 
leading to autoimmune dysfunction.[2] Monogenic 
diabetes, a less frequent form of the disease, is caused 
by a particular gene mutation that affects pancreas 
development and β-cell function.[3]

The literature demonstrates the availability of a 
range of therapeutic strategies for the management 
of diabetes. The most popular techniques include 
diet restriction, oral antidiabetic drugs, and insulin.[4-6] 

One promising treatment is the exchange of 
β-cells via transplantation of islets of Langerhans, 
yet unfortunately, the lack of donors is the primary 
cause of its underuse.  For this approach, human 
pluripotent stem cells (PSCs), such as embryonic stem 
cells (ESCs) and induced pluripotent stem cells (iPSCs), 
are a crucial supply of β-cells. With further studies, 
we have come remarkably close to the original form. 
However, the challenges of producing a fully mature 
β-cell remain.[7] This has the potential to be a real 
cure for T1DM and possibly T2DM and MD. Islet cell 
transplantation (ICT) has been associated with less 
progression of microvascular complications such as 
diabetic nephropathy (DNP), diabetic neuropathy (DN), 
diabetic retinopathy (DR), and others.[8] In different 
research with a three-year follow-up, ICT was superior 
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to intensive medical therapy in terms of improving 
hemoglobin A1c and slowing the progression of DR.[9] 

Despite its ability to save lives, insulin often does not 
halt the development of end-stage microvascular 
complications in patients, thus, patients still face 
diabetes fatal consequences despite the development 
of insulin. Stem cell-based alternative therapy has 
eventually become a candidate for high interest 
over injected insulin as an important approach for 
diabetes treatment. Nonetheless, further research is 
needed to overcome various clinical challenges, such 
as donor shortages, and to determine its feasibility.

THE RELATIONSHIP BETWEEN STEM 
CELLS AND DIABETES

Transplantation of insulin-producing cells has 
enabled stem cell repair of pancreatic β-cells.[10,11] 

Under the normal conditions and signaling, stem 
cells have the astounding ability to self-renew 
and differentiate into specialized cells such as 
lymphocytes, hepatocytes, leukocytes, erythrocytes, 
myocytes, nerve cells, and muscle cells.[12] 

As cell sources, stem cells are typically classified 
as ESCs or adult stem cells (ASCs). While ASCs are rare 
stem cells found in almost all major organs that are 
referred to as multipotent cells due to their limited 
ability to differentiate, ESCs -also known as PSCs- on 
the other hand, are differentiated from the embryo’s 
inner cell mass and have the ability to differentiate 
into various germ cell line.[13] 

Adult stem cells are commonly found in medical 
applications. For instance, for the successful treatment 
of leukemia and other hematological tumors, bone 
marrow transplantation employs hematopoietic stem 
cells (HSCs) from donor marrow. In a similar manner to 
HCSs, ASCs not only can multiply but also differentiate 
into various blood cells, whereas mesenchymal stem 
cells (MSCs) promote the formation of fat, bone, and 
cartilage.[14,15] In recent years, remarkable progress 
has been made in the generation of functional 
β-cells from human stem cell populations. This 
strategy describes the path that PSCs take during 
embryogenesis, from definitive endoderm formation 
to pancreatic endoderm, endocrine progenitors, and 
ultimately islets of Langerhans.

Ethical concerns make investigating the prospect of 
regenerating insulin-secreting cells problematic.[16-18] 

Scientists are attempting to employ several 
types of stem cells to treat a wide range of medical 
ailments.[19] Despite these advances, more than 400 

million people with diabetes worldwide continue to 
suffer from catastrophic consequences such as DNP, 
DN, and DR.[20] 

Diabetes occurs when the pancreatic cells 
responsible for insulin secretion become dysfunctional 
or produce insufficient insulin, the body does not 
respond to the produced insulin, and glucose builds 
up in the blood. As a result of this inability to manage 
glucose, diabetes-related micro-, and macrovascular 
effects occur. Thirst, polyphagia, weight changes, 
polyuria, and blurred vision are common symptoms 
of diabetes. In advanced cases, hyperglycemia with 
ketoacidosis is likely to occur.[21-24]

PLURIPOTENT STEM CELLS AND 
DIABETES

Scientists highly value the pluripotent state of 
ESCs, and it is for that, that they are being studied 
for their use in a variety of medical conditions, 
including diabetes.[25] Through differentiation and 
established development, ESCs are viewed as a 
great source for the production of islet cells capable 
of producing insulin. Although challenging when 
considered, it is possible that ESCs might be made 
to differentiate into pancreatic islet cells, which then 
could be transplanted into the area of concern in 
diabetic patients, thus preventing β-cell deficiency. 
In the past, mouse ESCs (mESCs) have been used for 
this approach. Researchers have generated replicas 
from genetically altered and drug-selected mESCs 
that can secrete insulin. Following monitoring, these 
cells were implanted into diabetic mice and improved 
hyperglycemia.[26–31] Aside from mESCs, another 
group utilized human ESCs (hESCs) for the same 
purpose.[32,33] 

Cells co-expressing pancreatic and duodenal 
homeobox 1 (PDX1) and NK6 homeobox protein 1 
(NKX6.1) in the developing human embryo show 
multipotent pancreatic bud and stem progenitors 
that subsequently produce insulin-secreting β-cells.[34] 

Key transcription factors (TFs) are highly expressed 
in pancreatic progenitor cells and β-cells involved in 
insulin secretion. Co-expression of PDX1 and NKX6.1 
has been shown to be essential for the production of 
mono-hormonal, glucose-sensitive β-cells.[35,36] 

Specifically, NKX6.1 is a crucial marker regulating 
β-cell maturation and functionality.[35,37] Researchers 
have reported varying degrees of success with regard 
to ESCs and islet generation. As a result, many issues 
have been encountered, including cell homogeneity, 
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immaturity of differentiated cells, low numbers of 
cells that produce insulin, and inadequate insulin 
sensitivity to glucose.[30,32,33,38,39] On the other hand, as 
neither C-peptide nor intracellular insulin is produced 
after the cells are cultivated in an insulin-free medium, 
several research groups claim that these cells are not 
insulin-producing cells at all.[40-42]

The first cell line to be used for in vitro produce 
β-cells were ESC cells. A procedure has been created 
by one group to transform mESCs into definitive, 
completely pure, endodermal cell lines.[16] It 
demonstrated the production of pancreatic endocrine 
hormone-producing cells containing insulin and 
C-peptide.[43] As a result, they were able to produce 
insulin from these cells in the human islet interval, 
yet were unable to produce it in response to glucose. 
Later on, this response was achieved by a different 
group. Pluripotent stem cells have been proven 
to have drawbacks, including a significant risk of 
tumorigenesis, immunological rejection, and ethical 
controversies.[18,44-46] These considerations explain the 
reason why the clinical use of ESCs is still unclear. 
Numerous molecular similarities are shared between 
iPSCs and ESCs. Therefore, by obtaining specific 
iPSCs from diabetics, the ethical and immunological 
rejection concerns and moral questions associated 
with ESC transplantation have not emerged.[47-54] 

These findings might make iPSCs a promising choice 
for cellular replacement therapy in T1DM in the future.

STEM CELL TREATMENT FOR T2DM
Type 2 diabetes mellitus is characterized by 

insulin resistance and reduced insulin secretion. 
Treatment includes diet, oral antidiabetics, and 
the use of external insulin.[55-64] Patients with T2DM 
who regularly take insulin eventually acquire insulin 
resistance, and existing therapies do not completely 
solve this issue.[65] Although transplanting pancreatic 
islet cells is seen to be a viable strategy, obstacles like 
a paucity of donors and ethical concerns have limited 
its use. In order to increase the lowered insulin levels 
in patients, stem cells such BMSCs, ADSCs, ESCs, and 
iPSCs can develop into beta- and comparable cells 
capable of producing insulin.[45,66] 

Patients with T2DM who received a combination of 
intrapancreatic bone marrow infusion and hyperbaric 
oxygen therapy experienced improvements in 
glycemic control and C-peptide levels as well as a 
reduction in their need for insulin.[67]  After receiving 
a BMSCs injection, T2DM patients improved in the 
same way.[68] 

In rats with high-fat diet-induced T2DM, BM-MSC 
transplantation activated insulin receptor substrate, 
and reduced hyperglycemia. It was discovered that 
glucose transporter type 4 (GLUT4) translocation and 
expression had increased.[69] 

Mesenchymal stem cells have demonstrated 
therapeutic effects on islet cell recovery and 
glycemic control in animal models. Clinical practice 
has been affected by these findings. The literature 
contains clinical research on MSC therapy in T2DM 
patients.[70-78] Nevertheless, there is still a long way 
to go for a definitive and routine approach to stem 
cell-based treatment of T2DM.

Recent research has demonstrated that VEGF 
is crucial to the development of vascular damage 
in DR and has suggested that blocking VEGF is a 
useful strategy for managing the condition. The 
reduction of VEGF production by MSC injection in 
a hypoxic environment by the reductase enzyme 
inhibitor atorvastatin has been proven.[79-85] Moreover, 
studies indicate that BM-HSCs provide better visual 
activity.[86] 

Epithelial progenitor cells (EPCs) generated 
from mouse BM-MSCs and human MSCs have 
been demonstrated in animal models to stimulate 
neovascularization and enhance DR.[87-89]

Patients with T1DM and T2DM may develop foot 
ulcers and require amputations as a result of DN, one 
of the most prevalent consequences of DM. When 
hyperglycemia rises over time, DN develops into 
a chronic condition.[90,91] Among the reasons linked 
to the occurrence of DN are dysregulated glucose 
levels, metabolic variables, oxidative stress, elevated 
glycolysis hemoglobin levels, and poor blood velocity 
due to free radical buildup.[91,92] Besides, prolonged 
elevated blood glucose levels also promote the 
creation of advanced glycation end products 
(AGEs), which, after binding to their receptors, start 
an inflammatory reaction and enhance oxidative 
stress, which further causes Schwann cells to 
deteriorate. Subsequently, any oxidation-mediated 
loss of function in these cells, which govern nerve 
regeneration as well as neuron insulation, increases 
DN in diabetes patients.[93-98]

Diabetic nephropathy, a microvascular 
complication of DM, is one of the most common causes 
of end-stage chronic kidney disease and is associated 
with high mortality.[99-101] Matrix molecule-producing 
podocytes in the glomerular basal membrane are 
damaged in DNP, resulting in proteinuria, fibrosis, 
and renal failure. Self-regeneration of damaged 
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podocytes is limited, and the proteinuria condition 
worsens due to the negative effect on the glomerular 
barrier.[102] 

Proteinuria, fibrosis, and dysfunction of proximal 
tubular epithelial cells (PTECs)  together with 
increased tubulointerstitial inflammation are all 
signs of decreased renal function.[103]  The negative 
features of PTECs, such as inflammation, are increased 
by prolonged hyperglycemia, AGEs, and glycated 
albumin.[104] 

The renin-angiotensin system activation, synthesis 
of different growth factors, and excessive cytokine 
production are only a few of the several routes 
whereby AGEs are hypothesized to be implicated in 
the pathophysiology of DNP.[105] By preventing the 
production of pro-inflammatory cytokines, blocking 
inducible nitric oxide synthase, and encouraging 
parenchymal cell proliferation, MSCs can improve 
renal healing.[106,107] To simulate DNP characteristics, 
iPSCs were developed into podocytes in many 
studies.[108,109] 

The paracrine action of renal trophic factors 
released by MSCs in DNP was the subject of one 
investigation. Animals with diabetes brought on by 
a high-fat diet and streptozotocin received MSCs. 
It was found that both therapies had ameliorative 
effects.[110] A significant decrease in blood glucose 
levels was observed in MSC-treated diabetic mice. 
Furthermore, albuminuria was reduced, and glomeruli 
were histologically normal in these animals. On the 
other hand, in diabetic mice without MSC treatment, 
glomerular enlargement was found to be present. 
Thus, MSC administration appeared to prevent the 
regeneration of beta-pancreatic islets and kidney 
damage in diabetic animals. According to the results 
of the study, MSC transplantation is recommended 
as a treatment for T1DM.[111] In addition to that, by 
reducing podocyte loss and promoting the release of 
bone morphogenetic protein-7, MSCs reduced fibrosis 
and glomerulosclerosis. They thereby contributed to 
the regeneration and protection of DNP.[112] 

The injection of BM-MSC enhanced renal function 
and controlled the levels of insulin, heme oxygenase-1, 
AGEs, and glucose in the blood.[113] The results of the 
research show that stem cell-based treatments, such 
as MSCs, are successful in treating DNP, despite 
their limitations due to the consequences mentioned 
previously.

POTENTIAL OF STEM CELLS: THEIR 
IMPACT ON MACROVASCULAR AND 

BEYOND 
Atherosclerosis is a macrovascular condition 

that is common in DM patients. Stroke, myocardial 
infarction, and vascular disease are among the risks 
that have been linked to persistently elevated blood 
sugar levels.[114,115] Depletion EPCs and the presence 
of cells like CD133 and CD34 are reliable indicators 
of arterial disease. Moreover, reduced EPC numbers 
have been identified as a potential new indicator of 
peripheral artery disease in DM.[116–118] 

Vascular stem cells, which may identify EPCs, 
are being researched as a potential therapy for the 
macrovascular problems of diabetes. In one study, 
it was demonstrated that vascular progenitor cells 
developed from human vascular smooth muscle cells 
into vascular networks.[119] In vivo testing of EPCs’ 
capacity to create vascular networks was successful. 
The same CD133+ subset from which mesenchymal 
progenitor cells (MPCs) are produced may also be 
a candidate for this vascular job.[120,121] Intravenous 
injection of MPCs slowed cardiac remodeling and 
enhanced myocardial function in a diabetic animal 
investigation employing a cardiomyopathy model, 
with a substantial increase in matrix metalloproteinase 
(MMP)-2 activity and a decrease in MMP-9.[122]

Considering in terms of long-term implications 
in DM, chronic hyperglycemia is known to cause 
endothelial dysfunction, subsequently causing issues 
including vascular network damage in the target 
organs. The ability of progenitor cells from diabetic 
animals to restore vascular homeostasis has been 
demonstrated in various experiments.[123,124] This 
finding implies that the number of stem cells decreases 
with the formation of a deficit of major stem cells in 
diabetes. The use of these formerly mentioned two 
stem cells to correct vascular dysfunction and restore 
vascular function still requires further research before 
a clear prescription can be made. Nonetheless, the 
use of stem cells to treat macrovascular problems 
appears promising.

In conclusion, diabetes is a metabolic condition 
that is widespread across the world. Due to damage 
to the pancreas’ β-cells, it is characterized by insulin 
loss and impaired insulin sensitivity. Diabetes and 
its consequences continue to endanger human life 
despite the discovery of insulin. Although ICT has 
been tested by researchers as an alternate therapy, 
the lack of donors still poses problems in practice. 
Furthermore, the first stem cells employed in the stem 
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cell strategy for diabetes were ESCs. Yet, iPSCs have 
emerged as a substitute due to issues including tumor 
risk as well as ethical questions. Mesenchymal stem 
cells and BM-HSCs have also been alternative sources 
for β-cells. Induced pluripotent stem cells regulate 
glucose by developing into beta-cell-like cells, 
according to animal model research. We covered the 
microvascular and macrovascular effects of diabetes 
in this chapter, as well as prospective therapeutic 
strategies using the current stem cell paradigm. 
Mesenchymal and HSCs have been demonstrated 
to aid in retinal healing in DR by differentiating 
into ocular cells. Similarly, stem cell applications 
for DNP, DR, and atherogenic illnesses brought on 
by endothelial dysfunction caused by diabetes are 
being studied. Given intercellular communication, 
heterogeneity, tumor risk, and ethical considerations, 
cells with this remarkable capacity for differentiation 
are likely candidates to be used in the development 
of future standard operating procedures to treat 
diabetes and its complications by substituting insulin, 
which has no lasting effects.
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