
Review

Journal of Experimental and Basic Medical Sciences 2023;4(3):156-164

JOURN
A

L 
O

F
 E

X
P

ER
IM

ENTAL AND BASIC M
E

D
IC

A
L S

C
IEN

CES

2019

JEBMS

Genetic Aspects of Aging and Anti-Aging Strategies

Büşra Nur Dal1, İlknur Altuntaş1, Oytun Erbaş1 

ABSTRACT

Numerous theories exist concerning aging and its causes. 
Understanding the factors contributing to aging allows for 
the implementation of necessary precautions, and while 
complete prevention of aging may not be achievable, 
significant strides can be made. Recent advancements in 
genetic science have brought aging research to a prominent 
position. Studies on aging will play a crucial role in the future 
discourse on longevity, emphasizing the importance of the 
current state of genetic research in this field. The collective 
findings in this review contribute to a comprehensive 
understanding of aging, laying the groundwork for future 
discussions on longevity and the intricate interplay of 
genetics in the aging process.
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Aging and longevity are determined by a complex 
interplay of genetic, non-genetic, and environmental 
factors.[1] Throughout history, humankind has 
perennially questioned, ‘Why do we age?’ or ‘Why am I 
aging?’ and has endeavored to find answers. Presently, 
research is underway to investigate the causes of 
aging, with various theories proposed to explain the 
underlying reasons for the aging process.[2] Aging 
is highly variable, dependent on the rates at which 
changes occur throughout an organism’s lifespan.[3] 

It is recognized that aging is a biological condition 
arising from stress, manifesting in both physiological 
and pathological processes.[4] Studies elucidating the 
pace and overall impact of cellular aging define it 
as a state of cellular quiescence, irreversibility, and 
reduced replicative capacity relative to aging.[5]

BIOGERONTOLOGY
Biogerontology is referred to as the science of 

biological aging, examining the effects of aging on 
living organisms. The field dealing with the treatment 
of diseases related to old age is known as ‘Geriatrics.’ 
It is assumed that aging arises from the Gerontogenic 
effect. Biological aging is not controlled by a specific 
mechanism or regulator. Longevity-correlation 

analyses conducted on the lifespan of monozygotic 
and dizygotic twins have indicated that genes have 
approximately a 25% effect on lifespan. Non-genetic 
factors, such as environmental factors, healthy 
nutrition, physical activity, etc., have been observed 
to contribute to lifespan by more than 75%.[6,7]

The field of ‘Gerontology’ studies the biochemical 
processes and alterations in gene activity that affect 
genes influencing longevity. The emergence of aging 
is assumed to involve two types of gerontogenic 
interactions: the discovery of late-acting mutations 
that manifest their effects later during fertilization and 
birth, and the period of growth, development, and 
maturation.[8] In economically developed countries, 
the average lifespan is between 80 and 85 years. The 
recorded maximum human lifespan to date is 122 
years, five months, and 14 days.[9] 

Genes involved in repair and maintenance 
pathways, crucial for longevity, can have 
gerontological conditions affecting the aging 
phenotype. These genetic pathways are classified as 
general and specific pathways.[10]
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GENETIC FACTORS CONTRIBUTING TO 
AGING

Telomere Shortening 

Genes responsible for telomere extension do not 
interact during cell division, resulting in telomere 
shortening after each division. Once telomeres reach 
a certain length, cell division ceases, and cellular 
aging begins. While telomeres are active in germ 
cells, they remain passive in somatic cells. Germ cells, 
being passed on to the next generation, maintain 
their active state.[11]

Olovnikov[12] first discovered in 1973 that telomere 
shortening could control lifespan. In 1990, insights 
into telomere structure were elucidated through the 
work of scientists Harley et al.[13]

Aging in human cells occurs in two stages:

M1 Phase: Cell division halts, and aging initiates 
once telomeres reach a specific length. The cell 
cannot progress from the G0 or G1 phase to the S 
phase, leading to a halt in division. If the cell becomes 
unable to divide, it begins to age. Active expression of 
oncogenes, including Werner syndrome and various 
genetic diseases, occurs due to changes in telomere 
length and function.

M2 Phase: To transition from M1 to M2 phase, the 
p53 and Rb-like proteins of the cell are disrupted by 
viral oncogenes during M1. These proteins, not found 
in the G1 phase, skip to the G2 phase and proceed 
to the S phase, allowing cell division to continue. In 
somatic cells, telomerase enzyme activity decreases, 
leading to telomere shortening. Cells die at M2 if 
telomeres become excessively short. If telomere 
length remains at a certain level at M2, cells surpass 
M2 and continue dividing, a phenomenon regulated 
or reactivated by telomerase enzyme regulation.[14] 

Deoxyribonucleic acid (DNA) tumor viruses 
such as simian virus 40, human papillomavirus, and 
Adenovirus, along with chemical carcinogens and 
radiation, can prevent cellular aging through the 
transformation process. Tumor viruses bind to tumor 
cells and deactivate the cell suppressor tumors, p53, 
and p110Rb proteins. Evidence suggests that the 
viral transformation of p53 and p110Rb molecules 
leads to an extension of lifespan by inhibiting cellular 
inactivation. Immortal cells lacking p53 and p100Rb 
molecules are observed in cases of mutations and 
chromosomal abnormalities.[15]

Telomeres are structures containing non-coding 
DNA with the sequence 5’-TTAGGG-3’.[16] Transcription 

occurring in the telomerase reverse transcriptase 
(TERT) promoter ensures the maintenance of 
telomerase levels in various cell types. Lack of TERT 
expression in human fibroblasts results in telomere 
shortening, leading to aging after cell division and 
replication.[17] Telomerase’s primary function is 
to confer immortality to cells by preserving the 
integration of chromosome ends. DNA polymerase 
synthesizes telomeres through reverse transcription, 
preventing the fusion of chromosomes. Telomerase 
has significant implications in diseases such as cancer 
metabolism and aging.[18]

The initial evidence suggesting that telomere 
length contributes to aging was observed in 
primary fibroblasts, where telomeres shortened 
with increasing donor age, leading to replicative 
senescence when telomeres reached a critically short 
length.[19] 

Telomerase was first discovered in the ciliated 
protozoan Tetrahymena thermophila, which divides 
its macronuclear genome into 20,000 small 
chromosomes.[20] Telomeres, formed by the assembly 
of double-stranded TTAGGG repeats through specific 
proteins, protect the genomic structure by preventing 
chromosomal fusion. Telomere length varies within 
each cell, and human leukocytes typically have 
an average of 92 telomeres of varying lengths.[21]

Humans are born with telomeres ranging from 5 to 
15 kb, influenced by environmental factors. Telomere 
shortening, varying between 20-50 bp, occurs due to 
oxidative stress and various factors damaging DNA.[22]

DNA Damage

DNA damage occurs spontaneously in cells that 
make up the human body every day, alongside changes 
in DNA methylation and histone modifications. These 
damages lead to cell cycle arrest due to the halting 
of DNA and ribonucleic acid (RNA) polymerases, 
initiating a response indicating the need for DNA 
repair. Conditions such as apoptosis and senescence 
contribute to aging. DNA repair induces epigenomic 
changes that assist in the repair process.[23]

While DNA damage was initially thought 
to cause genetic instability, recent in vivo and in 
vitro studies suggest that DNA inflammation 
induces type 1 interferons and other inflammatory 
mechanisms within the cell. Accumulation of DNA 
damage in cells due to prolonged stimuli leads to 
chronic inflammation, tissue degeneration, and 
functional impairment with aging, and indirectly 
activates pro-inflammatory signals of DNA damage 
response.[24,25]
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An example linking persistent DNA damage to 
premature aging is observed in Fanconi anemia, an 
autosomal genetic disorder causing advanced bone 
marrow failure through hematopoietic stem and 
progenitor cells.[26]

Mammalian cells contain two genomes: 
nuclear and mitochondrial. Nuclear DNA includes 
approximately 20,000-25,000 intergenic genomes, 
while mitochondrial DNA has a circular plasmid 
containing 37 genes that code for 16,569 bases. 
Inherited mtDNA mutations have been implicated in 
various human diseases.[27,28]

Various factors influencing stress can trigger cellular 
stress. Nuclear DNA damage, often occurring with 
double-strand breaks, is fundamental to senescence. 
Senescence, discovered through telomere loss in 
human fibroblasts, limits cell numbers and induces 
cell cycle arrest through DNA damage.[29]

Oxidative stress facilitates DNA damage, 
contributing to aging. Factors inducing DNA damage, 
including oxidative stress, lead to damage to DNA 
bases or single-strand breaks. Increased oxidative 
stress accelerates telomere shortening at the ends of 
chromosomes.[30,31]

Although limited information is available on the 
transmembrane protein PLA2R1’s role in cancer and 
aging, studies have shown that it induces cellular 
aging by increasing reactive oxygen species (ROS) 
production and the amount of DNA damage, 
ultimately leading to cell death.[32]

Studies indicate that Rapamycin extends the 
lifespan of various organisms, including mice, 
Caenorhabditis elegans, Drosophila, and Hydra.[33] The 
translation of p53 results in an increase in DNA 
damage.[34]

CELLULAR DEATH AND OXIDATIVE 
STRESS IN AGING

Aging leads to a decrease in cell numbers due 
to programmed cell death occurring in various cell 
types.[35]

The oxidative stress theory of aging is based 
on the accumulation of oxidative damage in 
macromolecules through ROS, leading to functional 
losses associated with aging.[36] This theory has 
gained acceptance in long-lived species, including 
Saccharomyces cerevisiae, transgenic mice, C. elegans, 
birds, and the naked mole-rat (Heterocephalus glaber). 
Malondialdehyde and 4-hydroxynonenal are used 

to determine oxidative stress, both being toxic and 
mutagenic aldehydes.[37] Proposed by Harman[38] in 
1956, the theory suggests that elevated ROS levels 
facilitate oxidative stress, causing structural damage 
to DNA macromolecules and resulting in damage at 
the cellular and tissue levels.[39,40]

Oxidative stress increases mitochondrial 
membrane permeability, leading to the release 
of factors that restrict cell survival, causing tissue 
damage through apoptosis and necrosis due to 
ROS.[41] 

Reactive oxygen species serve as radicals to 
generate molecular oxygen, arising from enzymatic 
and non-enzymatic mechanisms. Various antioxidants 
remove ROS from within the cell.[42] Reactive oxygen 
species have short lifespans and rapidly react with 
biomolecules to alter their activities. Low levels of 
ROS within the cell allow for normal cellular function 
through redox signaling.[43] An increase in ROS 
formation with a decrease in neutralization leads to 
an elevation in oxidative stress at the cellular and 
tissue levels.[44,45]

Oxidative stress induces damage by causing lipid 
peroxidation in mitochondrial membranes and other 
membranes, as well as irreversible modifications in 
nucleic acids.[44] Activation of nicotinamide adenine 
dinucleotide phosphate oxidase leads to oxidative 
stress, increasing the levels of ROS.[46] Studies have 
shown that caffeine, an alkaloid, has effects on aging 
and oxidative stress. For instance, in human vascular 
endothelial cells, caffeine has been observed to 
prevent aging induced by oxidative stress. The effects 
of low concentrations of caffeine on cellular and 
tissue-level changes associated with aging caused by 
oxidative stress remain uncertain.[47]

The rise in oxidative stress with a decrease in 
mitochondrial antioxidant levels disrupts cell signaling, 
leading to the loss of cell and tissue homeostasis and 
promoting aging.[48] The continuous accumulation of 
oxidative damage in proteins, cellular lipids, or DNA 
accelerates the rate of aging.[49] Oxidative damage 
and chronic inflammation, linked to aging at the 
cellular and tissue levels, form a foundation that 
encourages functional decline in cardiovascular and 
skeletal muscle systems.[50] Oxidative stress increases 
significantly with intense exercise and ischemia, 
compounding the effects of aging.[51]

As mitochondrial oxidative damage increases 
with age, it alters mitochondrial dynamics 
by balancing fission, fusion, and autophagy 
processes.[52] Oxidative stress not only affects cell 
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survival, apoptosis, and cancer migration but also 
possesses bactericidal properties.[53] Studies indicate 
that dysfunctional mitochondria affected by an 
increased level of oxidative stress play a role in 
the pathogenesis of neurodegenerative disorders 
such as Alzheimer’s, Parkinson’s, and Huntington’s 
diseases.[54] Cumulative oxidative stress emerges as a 
primary factor contributing to aging and age-related 
neurodegenerative disorders in cellular, molecular, 
and behavioral studies.[55]

Given the high oxygen consumption in the 
retina, it exhibits resistance to oxidative stress.[56] 
Mitochondrial and motor impairments specific to 
Parkinson’s disease arise in the midbrain’s substantia 
nigra region due to the death of dopaminergic 
neurons triggered by oxidative stress.[57]

During aging, mitochondria without any function 
produce more ROS, leading to increased damage to 
telomeres due to oxidative breakdown. Telomeric DNA 
damage caused by oxidative stress has been strongly 
evidenced in human and animal models to accelerate 
rapid telomere shortening.[58] Intestinal aging induces 
structural changes and increases oxidative stress, 
significantly impacting the health of the elderly.[59] 
As endogenous antioxidant systems become less 
effective with age, elderly individuals become more 
sensitive to oxidative stress.[60] Nitro-oxidative stress 
plays a crucial role in endothelial cell dysfunction and 
inflammation.[61]

Exposure to an excessive amount of ROS results 
in oxidative stress-mediated cellular damage, 
causing oxidation of biomolecules, including DNA, 
proteins, and lipids.[62] The generation of oxidative 
stress and inflammatory agents will lead to increased 
endoplasmic reticulum stress and mitochondrial 
dysfunction.[63]

CELLULAR AGING
Cellular aging involves irreversible losses resulting 

from the loss of the replicative capacity of primary cells 
initially due to DNA damage occurring in defective 
telomeres. Telomere dysfunction arises from telomere 
shortening during DNA replication.[64] Cellular aging 
represents the state of the cell stress response, 
characterized by morphological and biochemical 
changes. It is a complex process where cells remain 
active, but the cell cycle stops.[65,66] Cellular aging was 
first defined using non-dividing diploid fibroblast 
cell lines by Hayflick and Moorhead[67] in 1961. It 
is a condition where physiological functions, such 
as cellular differentiation, decrease over time. The 

number of aging cells increases with age in various 
tissues and organs. Cellular aging is one of the most 
significant features of aging.[68,69]

Several conditions contribute to cellular aging, 
including DNA damage, inflammation, oncogenes, 
mitogens, reactive metabolites, proteotoxic stress, 
and damage occurring in molecular patterns.[70] 
Cellular aging is a state where repeated symmetric cell 
copies, critically short telomeres, and the permanent 
cessation of the cell cycle due to the DNA damage 
response occur. Most aging cells show epigenetic and 
chromatin structural changes.[71] 

Studies have demonstrated that excessive 
mitochondrial DNA mutations lead to physiological 
mitochondrial dysfunction and premature 
aging.[72,73] Cellular aging can facilitate wound 
healing. For example, inflammation-induced cellular 
aging reduces the critical role of fibroblast migration 
and proliferation in the formation of new tissue 
when new tissue formation occurs.[74] Cellular aging 
is a controlled process involving both positive and 
negative conditions such as embryonic development, 
wound healing, tumor suppression, and aging.[75]

Flow cytometry imaging is a device used to 
observe in vivo aging cells, enabling the evaluation 
of numerous aging markers at the single-cell level 
and their detection at the protein level.[76] Aging cells 
contribute to the prevention of tumor formation 
by causing cell cycle arrest.[77] Hypotheses suggest 
that aging cells, accumulating in various tissues over 
time, age, and space, contribute to impairments 
associated with many chronic diseases in humans and 
animals.[78] Cancer cells are susceptible to many stress 
factors that contribute to aging, such as oncogenic 
signaling, replicative stress, hypoxia, ROS, and nutrient 
deprivation. Some anti-cancer treatments also trigger 
the aging of cancer cells. Different types of leukocytes 
mediate the removal of aging cells by the immune 
system. Most of these leukocytes are present in the 
innate immune system.[79] DNA damage, telomere 
shortening, oncogene activation, metabolic signals, 
mechanical stress, and mitochondrial dysfunction 
trigger the formation of aging cells.[80]

PROTEIN MODIFICATIONS
Amino acids, particularly tyrosine, are found 

around the protein shell, and these proteins are known 
to contribute to biological aging and age-related 
diseases.[81] Cellular changes occur significantly with 
aging. Caveolin‐1 has been suggested as a marker in 
fibroblasts and endothelial cells.[82] Many cellular and 
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signaling pathways, including mammalian targets of 
rapamycin (mTOR), Sirtuin 1, and AMP-activated protein 
kinase, contribute to aging. The mTOR contributes to 
the extension of human life and the slowing of the 
aging process. Autophagy and inflammation have 
a significant impact during the aging process.[83] 

The accumulation of damaged proteins has been 
implicated in age-related diseases such as aging, 
type 2 diabetes, cancer, neurodegenerative disorders, 
cardiovascular diseases, and visible impairments.[84] 

Accumulation of damage in cellular proteins, lipids, 
and cell organelles occurs during the aging process, 
leading to disorders at the cellular, organellar, and 
organ levels, contributing to age-related diseases 
and cell and organism death.[85] Amino acid limitation 
reduces age-related DNA damage and extends 
lifespan by blocking the Tor1/Sch9 cascade. All amino 
acids contribute to cellular sensitization.[86,87]

ENVIRONMENTAL FACTORS
The effects of exercise on longevity have been 

observed in genetically determined long-lived 
individuals such as centenarians.[88] A significantly 
less recognized factor is air pollution. Rapid 
industrialization and urbanization have turned 
environmental pollution into a public health issue. 
In 2019, the WHO determined that 99% of the 
world’s population lives in places where air pollution 
levels exceed WHO limits, identifying air pollution 
as the single largest environmental health factor 
for humans. Air pollution has been identified as 
a cause of degenerative formations in skin aging, 
pigmentary problems in the skin, and the onset of 
skin disorders.[89]

PROGERIA SYNDROME
The expression of progerin leads to nuclear 

morphological abnormalities, misregulated gene 
expression, chromatin changes, mitochondrial 
dysfunction, defects in DNA repair, and rapid 
telomere shortening, promoting cellular decline and 
causing premature aging. The most characteristic 
feature in the cytology of fibroblasts of Hutchinson-
Gilford progeria syndrome patients is the occurrence 
of nuclear morphological abnormalities.[90] 

Genomic instability occurs due to deficiencies in 
DNA repair in premature aging syndromes, creating 
a state of instability that facilitates the early and 
high occurrence of cancer cases. This instability also 
contributes to the acceleration of aging and cancer 
processes.[91] Hutchinson-Gilford progeria syndrome 

is a condition in children characterized by gradual 
aging at the cellular and organismal levels. Jonathan 
Hutchinson discovered this disease in 1886. Progeria 
occurs due to a mutation in lamin A, encoded by 
the LMNA gene.[92] Hutchinson-Gilford progeria 
syndrome is observed in one in 4-8 million newborns, 
and aging symptoms appear 18-24 months after 
birth. These symptoms include growth retardation, 
thin and wrinkled skin, abnormal pigmentation, 
subcutaneous fat loss, joint stiffening, and weakened 
bone structure.[93]

LONGEVITY GENES
A significant portion of people wish to live longer, 

especially when their health is in good condition, 
and some aspire to extend their lives limitlessly. 
Two different pathways are identified for yeast Ras2 
activation: protein kinase A (PKA) and mitogen-
activated protein kinase pathways. There is evidence 
supporting the role of the PKA pathway in promoting 
longevity.[94] Naked mole-rats have a longer lifespan, 
while hypomorphic ribosomal yeast mutants have 
a shorter lifespan. Accuracy in yeast mitochondrial 
ribosomes is associated with longevity.[95]

 Genes associated with increased lifespan have 
been discovered in yeast, worms, flies, and mice, 
resulting in respective enhancements in longevity.[96,97] 

Numerous theories have been proposed regarding 
the evolution of aging, including the programmed 
death theory, the mutation accumulation theory of 
aging, the antagonistic pleiotropy theory of aging, 
and the evolutionary maintenance theory.[97] The 
autophagic decline is observed in many organisms 
with aging.[98,99]

ANTI-AGING
Various treatments, including medications, 

exercise programs, and hormone therapies, are 
spreading worldwide as medical interventions to 
mitigate the effects of aging. The global market for 
anti-aging health products is steadily increasing.[100] 

Conditions such as telomere loss, genomic 
instability, epigenetic changes, proteostasis loss, 
irregular nutrient sensing, and mitochondrial 
dysfunction are notable molecular and cellular 
occurrences in the aging process.[101] 

Mutations in mitochondrial DNA in elderly 
individuals lead to genomic instability. Telomeres are 
located at the ends of chromosomes and facilitate 
cellular aging once they reach a critical length known 
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as the Hayflick limit. Aging is a state of decreased bodily 
functions.[102] The skin is affected by aging, resulting 
in thinning, loss of elasticity, and dermal-epidermal 
flattening.[103,104] Harrison found that rapamycin has 
been observed to increase survival rates by 14% in 
females and 9% in males.[105]

In conclusion, the intricate nature of aging involves 
a dynamic interplay between genetic, non-genetic, 
and environmental factors. Biogerontology explores 
the effects of aging on living organisms, emphasizing 
the multifaceted influences that contribute to 
longevity. Telomere shortening, DNA damage, and 
oxidative stress emerge as pivotal factors in cellular 
aging, influencing processes such as apoptosis and 
senescence. The role of longevity genes, identified in 
various organisms, sheds light on potential pathways 
for extending lifespan. Progeria syndrome exemplifies 
how genetic mutations can accelerate aging, while 
environmental factors, including air pollution, also 
play a role in age-related skin disorders. The somatic 
mutation theory highlights the impact of DNA damage 
on aging, emphasizing the need for cellular responses 
and repair mechanisms. Overall, the comprehensive 
understanding of these molecular and cellular 
processes contributes to ongoing research in anti-
aging interventions and underscores the complex 
dynamics that govern the aging phenomenon.
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