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ABSTRACT

The endoplasmic reticulum (ER) is a crucial organelle involved 
in protein folding and maintaining cellular homeostasis. 
Disruptions in these processes lead to ER stress, triggering 
the unfolded protein response (UPR). It is regulated by 
key proteins such as X-box binding protein 1, eukaryotic 
initiation factor 2, activating transcription factor 4, and 
C/EBP homologous protein. Emphasizes the importance 
of ER stress and these key proteins in cellular biology 
and disease mechanisms. Endoplasmic reticulum stress 
and UPR dysregulation have been associated with 
various diseases, including neurodegenerative disorders, 
diabetes, and cardiovascular diseases. Understanding the 
complex relationship between ER stress, UPR, and disease 
pathogenesis has the potential to contribute to the 
development of novel treatment strategies. This review aims 
to advance our knowledge of cellular biology and enhance 
our understanding of disease diagnosis and treatment.
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The endoplasmic reticulum (ER) is a crucial 
organelle involved in protein synthesis, folding, and 
quality control within the cell.[1] Proper functioning of 
the ER is essential for maintaining cellular homeostasis 
and ensuring the normal physiological processes 
of the organism. However, various factors such as 
nutrient deprivation,[2] oxidative stress,[3] calcium 
imbalance,[4] viral infections[5] can disturb the ER’s 
function, leading to the accumulation of unfolded or 
misfolded proteins, a condition known as ER stress.[6]

Cells activate the unfolded protein response (UPR) 
to restore ER function, a signaling pathway that works 
towards alleviating ER stress and restoring protein 
homeostasis. When unfolded or misfolded proteins 
accumulate within the cell, it induces cellular stress.[7] 

In response, the cell initiates mechanisms to 
alleviate this stress and restore homeostasis. One 
of these cellular responses is UPR. Unfolded protein 
response aims to either restore the ER to its normal 
state or, in cases where the response is impaired, 
it may result in cell death. Endoplasmic reticulum 
employs several mechanisms to cope with protein 
accumulation. Firstly, it reduces the influx of proteins 
into the ER to manage the load. Secondly, the UPR 
is activated and actively involved in addressing the 

challenges of protein folding and quality control. 
Lastly, if the cell fails to maintain homeostatic balance, 
it may activate cell death pathways as a preventive 
measure against the harmful effects of unfolded 
proteins. Prolonged or severe ER stress can trigger 
apoptosis by activating specific UPR target genes 
and proteins, including X-box binding protein (XBP), 
phosphorylated eukaryotic translation initiation 
factor 2 (p-eIF2), activating transcription factor 4 
(ATF4), and C/EBP homologous protein (CHOP). The 
activation of these factors contributes to the cellular 
decision to undergo apoptosis as a means to eliminate 
damaged or dysfunctional cells.[8] 

Factors such as XBP, p-eIF2, ATF4, and CHOP play 
crucial roles in regulating cellular responses to ER 
stress.
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MECHANISMS OF ENDOPLASMIC 
RETICULUM STRESS

XBP1, p-eIF2, ATF4, and CHOP are key proteins that 
play important roles in the cellular response to ER 
stress. How each protein responds to ER stress:

The molecular mechanisms underlying ER stress 
are a complex interplay of signaling pathways that 
work together to restore protein homeostasis and 
maintain cellular function. Among the key players 
involved in this intricate process, XBP1 stands out as 
a crucial transcription factor that becomes activated 
upon ER stress. By regulating the expression of genes 
involved in protein folding and degradation, XBP1 
plays a pivotal role in restoring ER function and 
promoting cell survival.[9,10]

X-box binding protein 1, upon ER stress, an ER 
transmembrane kinase/endoribonuclease called 
inositol-requiring enzyme 1 (IRE1) is activated.[11] 
The IRE1 splices XBP1 messenger ribonucleic acid 
(mRNA), resulting in the production of a spliced and 
active form of XBP1 known as XBP1s.[12] The enzyme 
translocates to the nucleus and acts as a transcription 
factor, regulating the expression of genes involved in 
protein folding, ER-associated degradation (ERAD), 
and other aspects of the UPR.[13]  

Another significant protein involved in the response 
to ER stress is p-eIF2.[14] When phosphorylated in 
response to ER stress, p-eIF2 reduces global protein 
synthesis.[15] This selective inhibition allows the cell to 
conserve resources and redirect them toward coping 
with stress by activating adaptive mechanisms. The 
p-eIF2 plays an important role in maintaining cellular 
integrity under ER stress conditions by regulating 
protein synthesis.[16]

The p-eIF2, ER stress triggers the activation 
of several kinases, including protein kinase R-like 
endoplasmic reticulum kinase [PKR-like ER kinase 
(PERK)].[17] PERK phosphorylates the eukaryotic 
initiation factor 2 alpha (eIF2α) on a specific serine 
residue, resulting in its p-eIF2.[18] Phosphorylated 
eIF2 inhibits global protein synthesis, which reduces 
the burden on the ER and allows the cell to adapt 
to the stress.[19] However, p-eIF2 also promotes the 
translation of specific mRNAs, including ATF4, which 
plays a crucial role in activating genes involved in 
antioxidant responses and amino acid metabolism.

In addition to XBP1 and p-eIF2, ATF4 emerges 
as a key regulator of ER stress response. ATF4 is 
upregulated under conditions of ER stress and 
orchestrates the expression of genes involved in 

crucial cellular processes, such as antioxidant defense 
and amino acid metabolism.[20] By modulating these 
pathways, ATF4 contributes to cellular adaptation 
and the preservation of overall cellular health. Under 
ER stress conditions, ATF4 expression is upregulated, 
primarily through the PERK-eIF2α pathway. It acts as 
a transcription factor, regulating the expression of 
genes involved in various cellular processes, including 
amino acid metabolism, oxidative stress responses, 
and autophagy. It plays a critical role in promoting 
adaptive responses to ER stress and coordinating the 
cellular adaptation to maintain homeostasis.[21,22]

Furthermore, CHOP takes center stage as a critical 
regulator of ER stress-induced apoptosis.[23] CHOP 
occurs when ER homeostasis cannot be restored, 
leading to the initiation of programmed cell death. 
Through its involvement in apoptotic signaling 
pathways, CHOP acts as a guardian of cellular 
integrity, ensuring that irreparably damaged cells 
undergo controlled elimination, thereby preventing 
the propagation of dysfunctional cells.[24,25]

CHOP is induced by ER stress and acts as a 
transcription factor involved in both adaptive and 
pro-apoptotic responses. It is regulated by multiple 
UPR signaling pathways, including PERK and IRE1. 
CHOP can promote cell death if ER stress is severe or 
prolonged,[26] contributing to the pathophysiology of 
various diseases.[27]

Collectively, XBP1, p-eIF2, ATF4, and CHOP form 
an intricate network of proteins that orchestrate the 
cellular response to ER stress. Their coordinated actions 
play essential roles in restoring protein homeostasis, 
adaptive cellular processes, and, when necessary, 
triggering controlled cell death. Understanding the 
molecular mechanisms underlying ER stress and the 
involvement of these key proteins opens up avenues 
for developing therapeutic strategies to modulate 
ER stress-related diseases and enhance cellular 
resilience. The precise interplay and regulation of 
these proteins in response to ER stress are complex 
and context-dependent, highlighting the need for 
further research to fully understand their roles and 
potential therapeutic implications. The mediation of 
the activation of three primary signaling pathways 
occurs through the transmembrane proteins IRE1, 
PERK, and ATF6.[28] 

The UPR pathway involves the upregulation of 
ER chaperones and folding enzymes to enhance 
protein folding capacity, as well as the activation of 
ERAD machinery to eliminate misfolded proteins.[29] 
Additionally, the UPR modulates lipid metabolism, ER 
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membrane expansion, and autophagy to support ER 
function and adapt to stress conditions. The UPR also 
regulates the expression of genes involved in redox 
balance, inflammation, and apoptosis to maintain 
cellular health and integrity.[31] While the UPR is an 
essential adaptive response to ER stress, prolonged 
or unresolved ER stress can have detrimental effects 
on cell health. Persistent ER stress can lead to the 
activation of apoptotic pathways, triggering cell 
death. Moreover, unresolved ER stress can cause 
chronic inflammation, disrupt cellular metabolism, 
and impair organelle function, contributing to the 
development and progression of various diseases, 
including neurodegenerative disorders, diabetes, 
cardiovascular diseases, and cancer.[30,31]

Understanding the relationship between ER stress 
and normal cellular functions is crucial for deciphering 
the pathophysiology of diseases associated with 
ER stress dysregulation. Targeting the UPR pathway 
and associated proteins holds promise for the 
development of therapeutic interventions to restore 
ER homeostasis and ameliorate ER stress-related 
diseases.

ER STRESS: AN ACTIVE ROLE IN DISEASE 
Physiological Role of ER Stress

Endoplasmic reticulum stress and the UPR have 
been implicated in several physiological processes 
that are essential for normal cellular functions.[32] 
One such process is cell differentiation, where the 
UPR plays a regulatory role by modulating gene 
expression patterns.[33] 

Transcription factors activated during ER stress, 
such as XBP1, can influence the expression of genes 
involved in cell differentiation pathways. This 
highlights the dynamic interplay between ER stress 
and cellular specialization. Additionally, ER stress and 
the UPR are involved in immune responses. The UPR 
regulates the production and secretion of cytokines, 
which are crucial for immune cell communication and 
coordination.[5] 

Endoplasmic reticulum stress-induced activation 
of the UPR can impact antigen presentation, antibody 
production, and overall immune cell function.[34] 
Thus, ER stress contributes to immune homeostasis 
and the proper functioning of the immune system. 
Lipid metabolism is another physiological process 
influenced by ER stress. The ER plays a central role 
in lipid synthesis, modification, and transport. 
Disruptions in ER lipid homeostasis can trigger ER 
stress and the subsequent activation of the UPR.[35,36] 

The UPR modulates the expression of genes 
involved in lipid metabolism, influencing processes 
such as lipogenesis, lipolysis, and lipid transport. 
Imbalances in lipid metabolism resulting from ER 
stress have been associated with metabolic disorders, 
including obesity, non-alcoholic fatty liver disease 
(NAFLD), and dyslipidemia.[37]

The Pathological Role of ER Stress

Endoplasmic reticulum stress and the UPR 
are closely linked to the pathogenesis of various 
diseases.[30] In neurodegenerative disorders such as 
Alzheimer’s disease (AD), Parkinson’s disease (PD), and 
amyotrophic lateral sclerosis (ALS), the accumulation 
of misfolded proteins in the ER triggers chronic ER 
stress and UPR activation. This leads to neuronal 
dysfunction, synaptic impairment, and ultimately, 
neurodegeneration.[38,39] 

The interplay between ER stress, protein misfolding, 
and neurodegeneration underscores the importance 
of maintaining ER homeostasis in neuronal health.[40] 
Diabetes is another disease strongly associated with 
ER stress.[41] In pancreatic beta cells, chronic ER 
stress disrupts insulin production and secretion, 
contributing to impaired glucose homeostasis and 
the development of insulin resistance. Endoplasmic 
reticulum stress-induced dysfunction of pancreatic 
beta cells is a key factor in the pathogenesis of 
type 2 diabetes.[42,43] Understanding the mechanisms 
underlying ER stress in diabetes is essential for 
developing interventions aimed at preserving beta 
cell function and improving glucose regulation.[44,45]

Cancer cells often experience high levels of ER 
stress due to rapid proliferation, hypoxia, and nutrient 
deprivation within the tumor microenvironment.[46,47] 
The UPR allows cancer cells to adapt and survive under 
unfavorable conditions by activating prosurvival 
pathways. This promotes tumor growth, angiogenesis, 
and metastasis.[48] However, prolonged or severe 
ER stress can also induce apoptosis in cancer cells, 
highlighting the potential therapeutic targeting of 
the UPR for cancer treatment.[49] 

Cardiovascular diseases, including atherosclerosis, 
heart failure, and ischemia-reperfusion injury, involve 
ER stress-induced cellular dysfunction and death. 
In vascular endothelial cells and cardiomyocytes, 
ER stress contributes to endothelial dysfunction, 
inflammation, oxidative stress, and apoptosis.[50,51] 
Targeting ER stress and the UPR pathways holds 
promise for the development of novel therapeutic 
strategies to mitigate cardiovascular diseases.[52]
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Endoplasmic reticulum stress and the associated 
UPR are critical for maintaining cellular homeostasis 
and functioning under both physiological and 
pathological conditions. Endoplasmic reticulum 
stress plays essential roles in cell differentiation, 
immune responses, and lipid metabolism. However, 
dysregulation of ER stress can contribute to the 
pathogenesis of various diseases, including 
neurodegenerative disorders, diabetes, cancer, 
and cardiovascular diseases. Understanding the 
molecular mechanisms underlying ER stress and the 
UPR provides opportunities for the development 
of innovative therapeutic approaches to restore ER 
homeostasis and improve health outcomes in these 
diseases. Further research is warranted to unravel 
the intricate interplay between ER stress, cellular 
functions, and disease pathogenesis, ultimately 
leading to the development of targeted interventions 
for improved patient care and management. 
Endoplasmic reticulum stress and the associated UPR 
play crucial roles in maintaining cellular homeostasis 
and functioning under physiological and pathological 
conditions. Physiologically, ER stress is involved in 
different types of cell differentiation,[53,54] immune 
responses,[55] and lipid metabolism,[56] ensuring proper 
cellular function[57-59] and tissue homeostasis.[60,61] 

A close-up perspective on how ER stress affects 
these processes:

Cell differentiation 

Endoplasmic reticulum stress and the UPR are 
involved in regulating cell differentiation. During 
cellular differentiation, the demand for specific 
proteins may increase, leading to an imbalance 
in protein folding and ER homeostasis. This 
imbalance can induce ER stress and activate the 
UPR to restore protein folding capacity.[62] The UPR 
can modulate the expression of genes involved in 
cell fate determination, lineage commitment, and 
tissue-specific functions, thereby influencing the 
process of cell differentiation.[63]

Immune responses 

Endoplasmic reticulum stress and the UPR have 
crucial implications for immune responses. Immune 
cells, such as macrophages and lymphocytes, 
require proper protein folding and secretion for their 
functions, including antigen presentation, cytokine 
production, and antibody secretion.[64] 

Endoplasmic reticulum stress and the UPR 
can affect the activation, differentiation, and 
effector functions of immune cells. Additionally, 

ER stress-induced UPR activation can promote 
the production of inflammatory cytokines and 
chemokines, thereby contributing to immune 
responses and inflammation.[65]

Lipid metabolism

The endoplasmic reticulum is involved in lipid 
metabolism, including synthesis, modification, and 
storage of lipids.[66] 

Endoplasmic reticulum stress can influence lipid 
metabolism by affecting lipid synthesis enzymes, 
such as fatty acid synthase and sterol regulatory 
element-binding proteins. Endoplasmic reticulum 
stress can also disrupt lipid droplet formation and 
lipid transport processes. Dysregulation of ER stress 
and the UPR in adipose tissue, liver, and other 
metabolic tissues can contribute to disturbances 
in lipid metabolism, leading to conditions such as 
obesity, NAFLD, and dyslipidemia. In each of these 
physiological processes, ER stress can exert both 
beneficial and detrimental effects.[67,68] 

Mild to moderate ER stress and UPR activation 
can help restore cellular homeostasis and promote 
adaptive responses. However, chronic or severe ER 
stress can lead to cellular dysfunction, inflammation, 
and cell death, contributing to the pathogenesis of 
various diseases.[69-71] Understanding the role of ER 
stress in these physiological processes is essential 
for unraveling the mechanisms underlying disease 
development and identifying potential therapeutic 
targets.[72] Manipulating ER stress and the UPR 
pathway may offer opportunities for modulating 
cell differentiation, immune responses, and lipid 
metabolism for therapeutic purposes.

THE ER STRESS CONDUCTS THE IMMUNE 
ORCHESTRA

Immune responses are complex processes that 
involve the coordinated activation of immune cells 
and the production of various immune mediators to 
protect the body against pathogens and maintain 
tissue homeostasis. Endoplasmic reticulum stress has 
been recognized as a critical regulator of immune 
responses, influencing various aspects of immune cell 
function and immune mediator production. There are 
some key points:

ER Stress and Protein Folding in Immune Cells 

Endoplasmic reticulum stress can significantly 
impact protein folding and quality control in immune 
cells. Proper protein folding is crucial for the correct 
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functioning of immune cell receptors, signaling 
molecules, and secreted immune mediators. 
Endoplasmic reticulum stress can disrupt protein 
folding, leading to the accumulation of misfolded 
proteins and triggering the UPR to restore ER 
homeostasis.[73,74] However, unresolved or chronic ER 
stress can lead to the activation of pro-inflammatory 
signaling pathways and dysregulated immune 
responses.[75]

ER Stress and Activation of Immune Cells 

Endoplasmic reticulum stress can influence the 
activation and function of immune cells, such as 
macrophages, dendritic cells, and lymphocytes.[76] 

Endoplasmic reticulum stress-induced signaling 
pathways can modulate immune cell activation, 
cytokine production, and antigen presentation.[77] 
For example, the UPR sensor PERK can be activated 
during ER stress and can promote the production 
of pro-inflammatory cytokines in macrophages.[78,79]  
Moreover, ER stress can affect antigen presentation 
by altering the expression and processing of major 
histocompatibility complex molecules.[80]

ER Stress and Regulation of Innate Immunity

Endoplasmic reticulum stress has been shown 
to regulate various components of innate immune 
responses. Toll-like receptors (TLRs), key receptors 
involved in pathogen recognition, are influenced by 
ER stress.[81,82] Endoplasmic reticulum stress can affect 
TLR expression, trafficking, and signaling, modulating 
the activation of innate immune responses. 
Additionally, ER stress-induced UPR signaling 
pathways can intersect with pattern recognition 
receptor signaling, influencing the production of 
pro-inflammatory cytokines and the activation of 
innate immune cells.[83]

ER Stress and Adaptive Immunity

Endoplasmic reticulum stress can impact the 
function of immune cells involved in adaptive 
immunity, such as dendritic cells (DCs) and 
lymphocytes. DCs play a crucial role in antigen 
presentation and activation of T cells.[84] Endoplasmic 
reticulum stress can influence DC maturation, antigen 
processing, and cytokine production, affecting 
the priming of T-cell responses. In lymphocytes, 
ER stress can modulate their survival, activation, 
and differentiation, thereby shaping the adaptive 
immune response.[85]

ER Stress and Autoimmunity

Dysregulated ER stress responses have been 

implicated in the development of autoimmune 
diseases,[86,87] Endoplasmic reticulum stress-induced 
UPR signaling can promote the production of 
pro-inflammatory cytokines and chemokines, 
leading to tissue inflammation and autoimmunity. 
Furthermore, ER stress can impact the balance 
between regulatory T cells and effector T cells, 
contributing to immune dysregulation observed in 
autoimmune diseases.[88,89]

Understanding the interplay between ER stress 
and immune responses is crucial for unraveling the 
mechanisms underlying immune system function 
and dysregulation. Dysregulated ER stress can lead to 
impaired immune cell function, chronic inflammation, 
and increased susceptibility to infections and 
autoimmune diseases. Targeting ER stress pathways in 
immune cells has emerged as a potential therapeutic 
strategy for modulating immune responses and 
treating immune-related disorders.[90] 

Further research is needed to unravel the precise 
mechanisms by which ER stress influences immune 
responses and to develop targeted interventions to 
modulate ER stress in immune cells.

UNVEILING CELLULAR DYSFUNCTION 
FOR INNOVATIVE THERAPIES

Neurodegenerative Disorders

Endoplasmic reticulum stress plays a crucial role 
in the pathogenesis of neurodegenerative disorders, 
including AD, PD, Huntington’s disease (HD), and ALS. 
Accumulation of misfolded proteins, such as amyloid 
beta, tau, alpha-synuclein, and mutant huntingtin, 
leads to ER stress and activates the UPR. Prolonged 
or unresolved ER stress can promote neuronal cell 
death, and inflammation, and contribute to disorder 
progression.[91] 

Diabetes

Endoplasmic reticulum stress is closely associated 
with the development of type 2 diabetes and insulin 
resistance. In conditions of nutrient overload and 
lipotoxicity,[92] 

Endoplasmic reticulum stress is induced in 
pancreatic beta cells and peripheral tissues, leading to 
impaired insulin secretion and insulin resistance. The 
UPR is activated in response to ER stress, aiming to 
restore protein folding and alleviate stress. However, 
chronic ER stress can lead to beta cell dysfunction, 
inflammation, and pancreatic cell apoptosis, 
contributing to the pathogenesis of diabetes.[93]
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Cardiovascular Diseases

Endoplasmic reticulum stress has been implicated 
in the pathogenesis of various cardiovascular diseases, 
including atherosclerosis, ischemic heart disease, 
and heart failure.[94,95] Conditions like hyperlipidemia, 
oxidative stress, and hemodynamic disturbances can 
trigger ER stress in endothelial cells, smooth muscle 
cells, and cardiomyocytes. Endoplasmic reticulum 
stress in these cells promotes inflammation, 
endothelial dysfunction, plaque formation, vascular 
remodeling, and myocardial damage, thereby 
contributing to the progression of cardiovascular 
diseases.[96,97] 

Liver Diseases

Endoplasmic reticulum stress plays a significant 
role in liver diseases such as NAFLD, alcoholic liver 
disease, and viral hepatitis.[98,99] Factors like lipotoxicity, 
oxidative stress, and viral infection induce ER stress 
in hepatocytes. ER stress in the liver promotes 
inflammation, steatosis, hepatocyte apoptosis, and 
fibrosis, ultimately leading to the development of 
liver diseases.[27] 

Cancer

Endoplasmic reticulum stress has dual roles 
in cancer development, acting both as a tumor 
suppressor and as a pro-survival mechanism for 
cancer cells.[100] In the early stages of tumorigenesis, 
endoplasmic reticulum stress can activate the 
UPR to eliminate stressed cells or restore cellular 
homeostasis.[101] However, chronic or unresolved 
ER stress in cancer cells can promote cell survival, 
adaptation, and therapy resistance. Endoplasmic 
reticulum stress-mediated signaling pathways can 
enhance tumor growth, angiogenesis, and metastasis, 
contributing to cancer progression.[102]

Autoimmune Diseases

Endoplasmic reticulum stress has been implicated 
in the pathogenesis of autoimmune diseases, 
including rheumatoid arthritis, systemic lupus 
erythematosus, and inflammatory bowel disease.[103] 
Stress can modulate immune cell function, antigen 
presentation, and cytokine production, leading 
to dysregulated immune responses and chronic 
inflammation observed in autoimmune diseases.[104,105]

These diseases highlight the diverse implications 
of ER stress in disease pathogenesis. Understanding 
the mechanisms underlying ER stress-induced 
cellular dysfunction and its contribution to disease 
progression can offer valuable insights into 

developing therapeutic strategies targeting ER stress 
pathways for the treatment of various diseases.

Unraveling the Intricacies of 
Neurodegenerative Pathogenesis

Neurodegenerative disorders are a group of 
disorders that are characterized by progressive loss of 
function and death of nerve cells.[106] These disorders 
affect various regions of the nervous system, resulting 
in a wide range of symptoms, including impaired 
movement, memory loss, and cognitive decline.[107]

Several neurodegenerative disorders, such as AD, 
PD, and HD, have been linked to ER stress.

In Alzheimer’s disease, there is an accumulation 
of amyloid beta protein in the brain, which triggers 
ER stress and the activation of the UPR. This response 
initially aims to restore protein homeostasis, but 
prolonged ER stress and UPR activation can lead to 
neuronal death. Studies have shown that reducing 
ER stress through pharmacological or genetic means 
can alleviate cognitive deficits in mouse models of 
AD, suggesting that targeting ER stress may be a 
promising therapeutic approach.[108-111] 

In Parkinson’s disease, Endoplasmic reticulum 
stress and UPR activation have been implicated in the 
pathogenesis of dopaminergic neuron degeneration. 
Alpha-synuclein, a protein that accumulates in PD, 
can induce ER stress and activate the UPR. Inhibition 
of UPR signaling has been shown to protect 
dopaminergic neurons from alpha synuclein-induced 
toxicity, suggesting that targeting ER stress may be a 
potential therapeutic strategy for PD.[112-114] 

In Huntington’s disease, the mutant huntingtin 
protein can induce ER stress and activate the UPR, 
leading to neuronal death. Studies have shown 
that reducing ER stress through pharmacological or 
genetic means can alleviate neuronal dysfunction 
and delay disease progression in animal models of 
HD.[115,116]

In addition to AD, PD, and HD, ER stress has also 
been implicated in the pathogenesis of several other 
neurodegenerative disorders.

Amyotrophic lateral sclerosis 

Amyotrophic lateral sclerosis is a progressive 
neurodegenerative disorder characterized by the 
degeneration of motor neurons. Endoplasmic 
reticulum stress and UPR activation have been 
observed in ALS patients and animal models. 
Mutations in genes such as superoxide dismutase 
1 (SOD1), TAR DNA-binding protein 43 (TDP-43), 
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and fused in sarcoma (FUS) have been linked to ER 
stress-mediated neuronal cell death in ALS.[117,118]

Multiple sclerosis 

Multiple sclerosis (MS) is an autoimmune 
disease characterized by chronic inflammation 
and demyelination of the central nervous system. 
Endoplasmic reticulum stress has been implicated 
in the pathogenesis of MS, particularly in 
oligodendrocytes, the cells responsible for producing 
myelin. ER stress-induced apoptosis and dysregulated 
protein folding in oligodendrocytes contribute to 
myelin loss and neuroinflammation in MS.[119,120]

Prion diseases 

Prion disease, such as Creutzfeldt-Jakob disease 
and variant Creutzfeldt-Jakob disease, are caused by 
the misfolding and aggregation of prion proteins. 
Accumulation of misfolded prion proteins induces 
ER stress and UPR activation, leading to neuronal 
dysfunction and cell death. Modulating ER stress and 
UPR pathways has shown therapeutic potential in 
prion disease models.[121,122]

Frontotemporal lobar degeneration 

Frontotemporal lobar degeneration (FTLD) is a 
group of neurodegenerative disorders characterized 
by the degeneration of the frontal and temporal 
lobes of the brain.[123] 

Endoplasmic reticulum stress and UPR 
dysregulation have been observed in FTLD patients, 
and mutations in genes involved in protein quality 
control, such as progranulin and valosin-containing 
protein, can lead to ER stress-mediated 
neurodegeneration.[124-126]

Spinocerebellar ataxias 

Spinocerebellar ataxias (SCAs) are a group of 
genetic disorders characterized by the progressive 
degeneration of the cerebellum and other regions 
of the brain. Endoplasmic reticulum stress and UPR 
activation have been implicated in various SCAs, 
including SCA1, SCA3, and SCA7. Mutant proteins 
associated with these diseases induce ER stress and 
disrupt protein homeostasis, leading to neuronal 
dysfunction and cell death. These examples highlight 
the diverse range of neurodegenerative disorders in 
which ER stress plays a significant role. Understanding 
the specific mechanisms by which ER stress contributes 
to disease pathology in each disorder is crucial for 
developing targeted therapeutic strategies aimed at 
alleviating ER stress, restoring protein homeostasis, 
and preserving neuronal function.[127]  

Overall, these findings suggest that ER 
stress plays a crucial role in the pathogenesis of 
neurodegenerative disorders. Developing therapies 
that target ER stress and the UPR pathway may 
provide a promising strategy for the treatment 
of these devastating diseases. Further research is 
needed to fully understand the complex interplay 
between ER stress, the UPR, and neurodegenerative 
disorders and to identify novel therapeutic targets.

Neurodegenerative disorders are associated 
with the accumulation of misfolded or aggregated 
proteins, which can trigger the ER stress response and 
activate the UPR. 

THE ER STRESS: KEY PLAYERS IN 
NEURODEGENERATIVE PATHOGENESIS

X-box binding protein 1 is a transcription factor that 
regulates the expression of genes involved in protein 
folding and degradation. In neurodegenerative 
disorders, XBP1 is activated in response to ER stress 
and plays a role in clearing misfolded or aggregated 
proteins. Studies have shown that XBP1 can protect 
against neurodegeneration in animal models of AD 
and HD.[128-130]

Eukaryotic initiation factor 2 is a protein that 
is phosphorylated in response to ER stress, which 
leads to inhibition of global protein synthesis. This 
allows the cell to allocate resources to cope with the 
stress and prevent the accumulation of misfolded 
proteins.[131] However, prolonged inhibition of 
protein synthesis can lead to neuronal cell death and 
contribute to neurodegeneration.[132] 

In animal models of AD, blocking p-eIF2 activity 
has been shown to improve cognitive function and 
reduce pathological features.[133]

Activating transcription factor 4 is a transcription 
factor that regulates the expression of genes involved 
in antioxidant defense and amino acid metabolism. 
In neurodegenerative disorders, ATF4 is upregulated 
in response to ER stress and plays a role in protecting 
cells against oxidative stress. However, prolonged 
activation of ATF4 can lead to neurotoxicity and 
contribute to neuronal cell death. In animal models 
of PD and AD, blocking ATF4 activity has been shown 
to improve neuronal survival and reduce disease 
pathology.[134-136] 

CHOP is a key regulator of ER stress-induced 
apoptosis and can promote cell death if ER 
homeostasis cannot be restored.[137] 
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In neurodegenerative disorders, studies have 
shown that inhibiting CHOP activity can improve 
cognitive function and reduce neuronal death in 
animal models of AD and HD.[138,139]

In conclusion, disruptions in ER function can result 
in cellular stress, leading to protein accumulation and 
abnormal folding. Understanding the UPR response 
to ER stress and its contribution to psychiatric and 
neurodegenerative disorders holds valuable insights 
for clinical studies. The future of ER stress research 
appears promising, as it sheds light on intricate disease 
mechanisms. By capitalizing on this knowledge, 
researchers and clinicians can collaborate to develop 
innovative therapeutic strategies targeting ER 
stress-related pathologies. Through interdisciplinary 
approaches, we can unlock the full potential of ER 
stress as a therapeutic target and improve the lives of 
individuals affected by various diseases.
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