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Astrogliosis: Glial Perspective of Autism Spectrum Disorders
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ABSTRACT

To date, the cellular mechanisms underlying autism 
spectrum disorders (ASDs) have not been fully understood. 
However, various genetic and environmental factors 
contribute to the etiology of this developmental disorder. 
Astrocytes are abundant glial cells that perform various 
functions in health and disease in the central nervous 
system. Astrocyte dysfunction is found in many diseases, 
including multiple sclerosis, Alzheimer's disease, Parkinson's 
disease, Huntington's disease, and neuropsychiatric 
disorders. Increasing evidence suggests that astrocytes play 
an important role in synapse maturation and function, and 
there is evidence of deficiencies in glial cell function in ASD, 
suggesting a link between astrocytes and autism. The aim 
of this review is to understand astrocyte functions and their 
contribution to ASD.
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Autism is a developmental disorder of the central 
nervous system (CNS) characterized by stereotyped 
and repetitive movements, impaired social interaction, 
language, and non-verbal communication. It starts 
in early childhood and can have changing clinical 
symptoms over time, lasting throughout a person’s 
life with varying degrees of severity.[1] Autism 
spectrum disorders (ASDs) are classified into two 
main categories: deficits in social communication and 
interaction, and repetitive behaviors and restricted 
activities. Additionally, digestive problems, epilepsy, 
immune problems, sleep disorders, negative mental 
states (depression and anxiety), and mitochondrial 
dysfunction can also develop in ASD.[2-3] This disorder 
affects many parts of the brain (dorsal and medial 
prefrontal cortex, superior temporal cortex, and 
amygdala), but it is not well understood how this 
effect develops. Parents typically notice this condition 
in their children within the first two years of life. 
Early behavioral or cognitive interventions can help 
children develop self-care abilities and social and 
communication skills.[4]

In 1943, American child psychiatrist Leo Kanner[5] 
named autism early childhood autism. Kanner used 
the same term to describe the characteristics of 

eleven children exhibiting similar behavioral patterns 
and reported autism as a syndrome with problems 
in emotional contact and interpersonal relationships 
in his article. Describing a clinical picture that 
includes delayed speech, repetitive behaviors, poor 
eye contact, communication problems, and unusual 
interests and abilities, Kanner stated that autism is a 
congenital disease. Autism has a prevalence of 12-15% 
worldwide.[6-7] According to a study, autism is present 
in every 59th child. Autism is three to four times more 
common in boys than in girls, and many girls show 
less prominent features than boys.[8] It is genetically 
very heterogeneous and is seen to be associated with 
many genetic mutations, most of which are probably 
rare causal variants.[9] 

The genetic heterogeneity of autism has made 
it difficult to identify specific genes related to 
the disease and has therefore hindered efforts to 
investigate disease mechanisms. Recent findings on 
the changing genetic pathways in ASD have been 
obtained from studies of syndromic disorders with 
a high incidence of autism caused by mutations in 
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a single gene, including Rett syndrome (RTT) and 
Fragile X (FXS) syndrome.[10]

Fragile X Syndrome

Fragile X syndrome is the most common cause 
of familial mental retardation in males, after Down 
syndrome, and can lead to intellectual disability.[11] 
The Fragile X mental retardation (FMR) protein plays 
an important role in neuronal development, synaptic 
transmission, and elasticity. Therefore, when the FMR 
protein is not produced at all or is significantly 
reduced, neuronal involvement occurs.[12] 
Obsessive-compulsive disorder and anxiety disorder 
are common symptoms. The incidence of autism is 
much higher in males with FXS than in the general 
population.[13]

Rett Syndrome

Rett Syndrome occurs due to mutations in the 
methyl-CpG binding protein 2 (MECP2) gene. The 
MECP2 gene located in the Xq28 region encodes the 
MeCP2 protein. MeCP2 protein is most abundant in the 
brain.[14] One of the most challenging aspects of RTT 
is complex and tonic-clonic seizures.[15] Abnormalities 
such as teeth grinding, screaming episodes, anxiety 
attacks are seen in RTT patients and there is no 
known cure.[16-18] In RTT mouse models, desipramine, 
a norepinephrine inhibitor, has been observed to 
alleviate breathing in MeCP2 mutant mice, but no 
improvement was observed in clinical trials.[19-21]

Neurodevelopmental Disorders and Autism

Neurodevelopmental genes are an important 
factor to consider, as functional and anatomical 
movements associated with defects in these genes 
during brain development can trigger the onset of 
neurodevelopmental disorders in childhood, including 
ASD.[22-23] Genes associated with neurodevelopmental 
disorders can be grouped into three broad categories: 
those related to synapse structure and activity, those 
related to protein synthesis, and those involved in 
regulating gene expression. Many of these genes code 
for proteins with a clear synaptic function, making 
the pathological features of neurodevelopmental 
disorders ‘neurocentric’. Therefore, it is anticipated 
that genetics alone may not be able to explain all 
cases of autism. Exposure to a range of non-heritable 
environmental factors in addition to a specific 
combination of autism-related genes can significantly 
influence susceptibility to autism and the variable 
expression of autism-related traits.[24]

Translation: In studies conducted with 
children and adolescents for the treatment of 

neurodevelopmental disorders, risperidone, and 
aripiprazole have been used, and in the majority of 
cases, improvement has been observed in irritability, 
self-harm, repetitive behaviors, and aggression.[25] 
In a study where oxytocin was applied to a small 
sample of individuals with autism, positive effects 
on social behavior were observed, which suggests 
that oxytocin may be effective in the symptomatic 
treatment of neurodevelopmental disorders.[26-28]

ASTROCYTES
Astrocytes are the most common glial cells in 

the CNS, which are considered the cornerstone of 
brain cytoarchitecture and function, along with 
neurons and oligodendrocytes.[29] It is known that 
they constitute 20-40% of all glial cells. Astrocytes 
are derived from neuroectoderm.[30] Astrocytes 
actively participate in neuronal metabolism, synaptic 
plasticity, and neuroprotection. They regulate blood 
flow by releasing various mediator molecules (nitric 
oxide, prostaglandins) that dilate and constrict blood 
vessels. Astrocytic processes surround all major 
synapses to ensure fluid, ion, and pH homeostasis 
for synaptic transmission. Additionally, astrocytes 
express functional neurotransmitter receptors at the 
synaptic level and release various neurotransmitters 
such as glutamate, gamma-aminobutyric acid (GABA), 
and adenosine triphosphate (ATP) via Ca+2-dependent 
exocytosis.[31-34]

Therefore, there is an increase in the expression 
of glial fibrillary acidic protein (GFAP) in response to 
neuronal damage.[35] Reactive astrocytes have been 
identified as potential therapeutic targets for certain 
disease contexts, where molecular dissection can help 
identify molecules that can enhance or block their 
functions. For example, a molecule called parawixin 
1, isolated from spider venom, has been shown to 
protect retinal neurons from ischemic degeneration 
by increasing the function of the excitatory amino 
acid transporter-2 (EAAT-2), which increases glutamate 
uptake and thus reduces the potential for glutamate 
excitotoxicity.[36]

Astrocytes can make contact with multiple 
neurons and up to 100,000 synapses.[37] They have 
receptors and ion channels found in neurons, 
allowing them to detect and respond to a variety 
of neuronal signals. Astrocytes and microglial cells 
play an important role in the elimination process 
of synaptic connections, which is a structural 
formation and elimination process. They are vital 
in controlling and improving the connectivity of 
mature neuronal circuits. For example, in developing 
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brains, astrocytes can physically eliminate synapses 
via phagocytic pathways, such as multiple epidermal 
growth factor-like domains 10 (MEGF10) and c-Mer 
proto-oncogene tyrosine kinase (MERTK).[38-40]

Astrocytes release a variety of neuroactive 
substances, including growth factors and 
gliotransmitters. Glutamate is an essential amino 
acid that plays a role in synaptic transmission. 
Mutations in glutamate receptors found in peripheral 
organs, tissues, and endocrine cells can result in the 
development of neuropsychiatric disorders.[41]

Overall, these studies suggest that the 
physiological interactions between astrocytes and 
synapses are essential for synapse formation and 
network functioning. Loss, deviation, or functional 
impairment of astrocytes and microglia may 
contribute to the pathogenesis and progression of 
autism. Astrocyte dysfunction is seen in a number 
of diseases, including multiple sclerosis, Alzheimer’s 
disease, Huntington’s disease, and neuropsychiatric 
disorders.

ASTROCYTIC ROLES IN GLUTAMATE AND 
GLUTAMATE TRANSPORTERS

Glutamate is the main excitatory neurotransmitter 
in the CNS, responsible for fast excitatory 
neurotransmission.[42] Five subtypes of glutamate 
transporters have been cloned to date. Three of these 
glutamate transporters were initially identified in the 
mouse brain: glutamate aspartate transporter (GLAST), 
glutamate transporter 1 (GLT-1), and excitatory 
amino acid carrier 1 (EAAC1). Their human homologs 
are EAAT1, EAAT2, and EAAT3, respectively. The 
remaining two human and rodent subtypes, EAAT4 
and EAAT5, share common terminology.[43] All five 
transporters are localized differently among various 
brain structures. GLAST immunostaining and protein 
expression are most prominent in the cerebellum, 
with intermediate levels in other structures such as 
the hippocampus and frontal cortex. In contrast, GLT-1 
expression is primarily found in the cerebellum with 
low levels of expression in the frontal cortex.[44] Both 
of these transporters represent the most prominent 
“astrocytic” transporters, localized at the astroglial 
membrane or in Bergmann glia associated with 
excitatory synapses. EAAT3 is expressed at low levels 
in different regions of the brain. The remaining 
transporters, EAAT4 and EAAT5, are expressed only 
in the cerebellum and retina, respectively.[45-46] Rapid 
removal of glutamate from the extracellular space 
is necessary for the survival and normal function of 

neurons. While all CNS cell types express glutamate 
transporters, astrocytes are primarily responsible 
for glutamate uptake.[47] Astrocytes mediate 
glutamate uptake through both Na+-independent 
and Na+-dependent systems. Na+-dependent 
glutamate transporters in astrocytes were originally 
cloned from the mouse brain and named GLAST and 
GLT-1.[48] Transporter activity is normally regulated at 
multiple levels, including protein expression, surface 
trafficking, protein binding, phosphorylation, and 
other direct modifications.[49-50]

ASTROCYTE GENE MUTATIONS
There are several examples of genetic mutations 

that lead to astrocyte dysfunction. The first example 
is a dominant mutation in the GFAP gene, which is 
exclusively expressed by astroglia in the CNS, causing 
Alexander’s disease. Patients with this macrocephaly 
exhibit severe disease dysfunction, seizures, 
psychomotor disturbances, and early. Another 
example is a dominant gain-of-function mutation 
in the gene encoding superoxide dismutase, which 
leads to the production of toxic molecules for motor 
neurons and causes a familial form of amyotrophic 
lateral sclerosis.[51-53]

GFAP is a member of the intermediate filament 
protein family that serves cytoarchitectural functions, 
along with vimentin, nestin, and others and is a 
marker for the immunohistochemical identification 
of astrocytes.[54]

EFFECT OF ASTROCYTES ON 
NEURODEVELOPMENTAL DISORDERS
There are several genetic mutations that can cause 

astrocyte dysfunctions. The dominant mutation of 
the GFAP gene, which is expressed only by astroglia 
in the CNS, causes Alexander’s disease. Patients with 
this macrocephaly exhibit severe disease impairment, 
seizures, psychomotor disturbances, and early. 
Another example is a familial form of amyotrophic 
lateral sclerosis caused by a gain-of-function 
mutation in the gene encoding superoxide dismutase, 
which produces molecules toxic to motor neurons. 
Astrocytes are part of the intermediate filament 
protein family, serving cytoskeletal functions, 
including GFAP, vimentin, nestin, and others, and are 
markers used for immunohistochemical identification 
of astrocytes. The first evidence of potential astrocyte 
abnormalities in neurodevelopmental disorders came 
from the biochemical analysis of brain samples of 
patients with ASD and from screening genetic risk 
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factors for various neurodevelopmental disorders. 
Astrogliosis, demonstrated by increased GFAP 
expression, was found in the cerebellar cortex of 
brains with ASD, but neuronal degeneration was not 
usually observed in the brains of neurodevelopmental 
disorder patients. Several other astroglial protein 
expression changes were also observed in the brain 
samples of patients with ASD, including increased 
EAAT2 and EAAT1 in the cerebellum, significantly 
increased connexin 43 in the superior frontal cortex, 
and decreased aquaporin 4 in the cerebellum.[55-57] 
These astroglial changes suggest that astrocytes 
may be involved in neurodevelopmental disorders. 
Genetic studies have identified specific nucleotide 
polymorphisms in the EAAT1 sequence that are 
associated with the severity of repetitive behaviors 
and anxiety in children with ASD.[58] Despite the 
results of these clinical studies, it is important to note 
that specific mechanisms involving astrocytes in the 
pathogenesis of neurodevelopmental disorders are 
still being identified.

Changes in astrocytes have been observed in 
patients with ASD and animal models. However, it 
is not clear whether astrocyte dysfunction in mice is 
causal or dependent on ASD-like phenotypes. The 
role of neurons in the pathogenesis of ASD has been 
a broad research topic. The expression of astrocyte 
markers such as GFAP, aquaporin-4, connexin 43, and 
EAAC1 has been altered in postmortem brain tissue 
from ASD-affected donors.[59-62] Astrocytes derived 
from control sources rescue the morphological and 
synaptic defects of ASD neuronal cultures. Astrocytes, 
the most abundant glial cells in the CNS, contribute to 
many critical brain functions such as neurogenesis, 
synaptic development, synaptic transmission, and 
plasticity during early development and adulthood 
and regulate their behaviors under both physiological 
and pathological conditions. Astrocyte-derived ATP 
plays a role in modulating ASD-like behaviors in 
mice.[63-66]

Although ASD is generally considered a 
neurodevelopmental syndrome, recent studies 
have shown that dysfunction in autism risk genes 
during both early development and adulthood 
leads to reversible autism-like phenotypes in adult 
animals when the normal functions of these risk 
genes are restored. Observations that the behavioral 
and physiological deficits in animal models of ASD 
are reversed upon pharmacological or genetic 
manipulation, together with the autism synaptic 
theory, suggest that a continuing synaptopathy may 
underlie the cause of ASD. Overall, astrocytes play 

a role in the pathogenesis of ASDs. Astrocytes can 
release various synaptic transmitters and modulators, 
including glutamate, D-serine ATP/adenosine, 
GABA, and lactate, through calcium-dependent and 
independent signaling pathways, but not limited to 
these. [67-71]

NEUROANATOMICAL FINDINGS IN 
AUTISM SPECTRUM DISORDERS

One of the most important theories regarding 
the neuropathology of ASDs is the abnormal growth 
of the amygdala, frontal and temporal cortex during 
development, which then slows down with age.[72] The 
main causes of this are thought to be neurogenesis, 
excessive dendritic growth, and inflammatory 
responses that lead to microglial activation.[73]

There may be three cellular factors to explain the 
excessive brain growth in autism:

Number of neurons: An increase in the number 
of neurons is not the only factor that can explain the 
accelerated cortical growth in autism.

Neuronal dendritic growth and the number of 
synapses: Neuronal dendritic growth and increased 
numbers of synapses are the closest possibilities for 
excessive early brain growth in autism. If dendrites 
grow excessively or do not reach the same level as 
active synaptic protrusions, abnormal connections 
may occur between neurons. However, only a small 
number of postmortem studies have examined 
neuronal dendritic connections or synapses related 
to autism. Numbers and sizes of glial cells: Gliogenesis 
has differences among microglia, oligodendrocytes, 
and astrocytes from a prenatal perspective. 
Astrocytes constitute 17% of the glia in the brain. If 
glia is responsible for the increase in cerebral volume 
in autistic children, a neuroinflammatory response 
involving microglia could be the likely culprit. All of 
these factors result in the overall brain growth seen 
in autism.[74-76]

In conclusion, until very recently, the role of glial 
cells at the onset of ASD was overlooked, and therefore, 
pharmacological strategies aimed almost exclusively 
at neuronal activity and synaptic transmission to treat 
symptoms. However, accumulating evidence suggests 
that astrocytes and microglia may play a significant 
role in the regulation of synapse formation, function, 
and elimination, and therefore may have an impact 
on ASD. Recent data suggest that ASD is at least 
partially caused by disorders affecting glial cells or 
neuron-glia interactions, and future pharmacological 
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research should consider the possibility of improving 
glial cell functions. By including more patients and 
control groups in studies, and developing biomarkers 
that can be used in the diagnosis and prognosis 
of autism, the disease process can be positively 
affected. This review shows that differences in glial 
cells, such as astrocytes, and disruptions in their 
functions, can have an impact on the ASD process. 
Although research on the molecular mechanisms of 
astroglial maturation and how the disruption of this 
maturation process contributes to the pathogenesis 
of neurodevelopmental disorders continues, 
the availability of new in vivo tools for studying 
astrocytes can be of great benefit in answering these 
questions. Understanding the role of astroglia in the 
pathogenesis of neurodevelopmental disorders will 
facilitate the search for treatments for these disorders. 
Future studies should shed light on differentiating 
between pathological processes underlying the core 
processes of autism and findings related to the cause 
of death or comorbidities.
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