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SHANK3 Mutation and Phelan-Mcdermid Syndrome
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ABSTRACT

The 22q13.3 deletion syndrome, also known as 
Phelan-McDermid syndrome (PMS), has been identified 
in more than 2200 people worldwide. Globally, there is a 
delay in development, intellectual deficiencies, and most 
importantly, difficulty and delay in speech. In addition, there 
is low muscle tone, weaker eye contact, extreme sensitivity to 
touch, and aggressive behaviors that suggest communication 
and social influences like autism or autistic-like traits, which 
are also classified as neurological disorders. The majority 
of PMS cases are not inherited genetically. Most often, it 
happens by mistake when reproductive cells are developing 
or when a fetus is first developing. Prenatal testing for high-
risk pregnancies can reassure in situations where there have 
been familial rearrangements. This review article provides 
general information about PMS. In addition, the relationship 
between PMS and autism spectrum disorder was examined. 
We also focus on the role of mutations in the SHANK3 gene 
in PMS.
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The removal of the distal long arm (q) of 
chromosome 22 results in the contiguous gene 
deficiency known as 22q13.3 deletion syndrome, 
commonly known as Phelan-McDermid syndrome 
(PMS). It has been identified in more than 2200 
patients globally. Autism or autistic-like traits that are 
present globally and are also classified as neurological 
disorders include developmental delay, intellectual 
deficiencies, particularly difficulty and delay in 
speech, poor muscle tone and weak eye contact, 
tactile sensitivity, and aggressive tendencies. Infants 
with PMS may begin to babble at a normal age, and 
young children may have a limited vocabulary by 
the time they are three or four years old. Although 
many kids at this age seem to lose their ability to talk, 
vigorous therapy and communication training can 
help them restore their verbal skills and expand their 
vocabulary. On the other hand, speaking will worsen 
over time.[1-4]

In contrast to other autosomal chromosome 
abnormalities frequently linked to growth 
deficiencies, most people with PMS develop within 
normal limits. Only 10% of the affected kids are 
underweight for their age, and some of them have 
growth that exceeds the 95th percentile. The severity 

of developmental delay varies. Motor developmental 
milestones like sitting, rolling, crawling, and walking 
frequently happen later than usual. Eighteen months 
is the typical age for sitting and rolling over. Although 
some people do not stand, walking often begins 
at the age of 27 months and is characterized by an 
erratic gait. It is usual to have mild to severe mental 
impairment.[1]

It can manifest in a variety of bodily parts. Long 
eyelashes, puffy eyelids, large eyebrows, large or 
unusual ears, very large hands, unusual toenails, 
full eyebrows, a narrow and disproportionate skull, 
full cheeks, a rounded and broadly arched nose, 
and a chin that is frequently pointed and may 
become prominent with age are common physical 
characteristics.[2,3]

One copy of SH3 and multiple ankyrin repeat 
domains 3 (SHANK3), which encodes a significant 
scaffolding protein present in the postsynaptic 
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density of excitatory synapses, has been identified 
as the gene responsible for PMS. Reduced dendritic 
number and poor synaptic transmission and plasticity 
are caused by decreased expression of SHANK3.[2]

HISTORY OF PMS
In 1985, PMS was originally defined by describing 

its clinical characteristics. Speech impairments, severe 
intellectual incapacity, and dysmorphic characteristics 
have all been linked to pericentric inversion of 
chromosome 22.[5] Similar case reports, dysmorphic 
characteristics, and delays have been documented 
in the scientific literature. It has been determined 
that these symptoms are brought on by deletions 
in the long arm’s terminal area of chromosome 22.[6] 
The genetic alteration of the acrosin (ACR), SHANK3, 
and RAB, members of the Ras oncogene family-like 
2 (RABL2B) genes in the 100 kb (kilobase) region of 
the chromosome has been linked to PMS.[7] The ACR 
gene is a gene that, using the appropriate genetic 
sequence, causes the production of a protein 
molecule essential for fertilization in spermatozoa. 
This gene’s deletion has just a small effect on the 
syndrome.[8] The members of the RAB, RAB2B gene 
produces a G protein that controls the movement of 
vesicles throughout the cell, however, the RAB2A gene 
on chromosome 2 neither replaces nor makes up for 
any RAB2B gene deletion.[9] The SHANK3 gene, which 
is expressed locally, produces protein molecules that 
protect the structural integrity of synaptic cells in the 
brain.[9-11] In a clinical investigation, Bonaglia et al.[12] 
found that the SHANK3 gene translocation between 
chromosomes 12 and 22 was well-characterized and 
correlated with PMS symptoms. This was validated by 
Wilson et al.[13] in research, they carried out in 2006 
using their experiments on 56 cases.

Etiology

In the hippocampus, cerebellar granule cells, 
caudate-putamen, and thalamic nuclei, the post-
translational SHANK3 messenger ribonucleic acid 
(mRNA) molecule is integrated and expressed 
at high levels. It is located in proximal and distal 
dendrites.[14-17] The SHANK3 protein has been 
linked to peripheral nervous system processing, 
including neuromuscular connections, using 
immunohistochemical methods.[18] To maintain 
appropriate synaptic development and operation, 
SHANK/Shank proteins interact with a wide range 
of diverse proteins, including cytoskeletal proteins, 
scaffolding proteins, and receptors.[19-22] In order to 
control receptor endocytosis, enable communication 
between signaling pathways, and promote synaptic 

plasticity-a crucial step in learning and memory 
SHANK/Shank protein molecules interact with 
signaling molecules and enzymes.[19,20] 

Epidemiology

As chromosomal microarray has not yet fully 
merged into mainstream clinical practice, in 
accordance with the 2010 guidelines that set it as 
the standard of care for people with developmental 
disabilities, its prevalence is likely underestimated, 
although 1200 people worldwide have been 
diagnosed with PMS.[23] Recent research using 
chromosomal microarray analysis or sequencing for 
autism spectrum disorder (ASD) reveals that deletions 
0.16% or mutations 0.31% in SHANK3 can account for 
at least 0.5% of autism. Additionally, genetic alteration 
of the SHANK3 gene has been linked to about 2% of 
ASD in people with moderate to profound intellectual 
disabilities.[24,25] Phelan-McDermid syndrome 
has an equal impact on both men and women.[26] 
Epidemiological research is being conducted to better 
understand and describe how paracrine genes affect 
the severity and phenotypic heterogeneity.[27] 

Diagnosis

A wide range of clinical characteristics of PMS 
exists, and the severity of these characteristics differs 
among those who are affected. As of yet, the diagnosis 
has been determined genetically rather than based 
on the specific characteristics that make up the 
clinical aspects of PMS. The most frequent genetic 
tests to diagnose SHANK3 haploid deficiency include 
chromosomal microarray analysis and multiplex 
ligation-dependent amplification, which confirm 
relative gene copy number.[28] Chromosome microarray 
analysis cannot detect intragenic mutations in genes 
less than 30 kb; instead, deoxyribonucleic acid (DNA) 
sequencing methods are utilized to pinpoint specific 
base pairs in the genome.[29] 

SHANK3 AND AUTISM SPECTRUM 
DISORDER 

Research on this subject has increased as a 
result of the overlap in occurrence and the link 
of the SHANK3 gene with autism. There have 
been 100 genes discovered, and about 20% of 
autism has been related to certain chromosomal 
rearrangements.[30-32] In addition to the SHANK3 
gene, the Fragile X syndrome-causing FMR1 gene 
mutation, the Rett syndrome-causing MeCP2 gene 
mutation, the tuberous sclerosis-causing TSC1/2 gene 
mutation, the Cowden syndrome-causing PTEN gene, 
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and the neurofibromatosis type 1–causing NF1 gene 
have also been identified in ASD.[30-33] Many genetic 
subgroups of autism share a considerable amount 
of the same physiological dysfunction, including 
deficiencies in synaptic function, synaptic plasticity, 
and excitatory glutamatergic transmission. A high 
connection has been found between various causes 
of autism, including genes like SHANK3 and TSC1, by 
creating a protein interaction network using protein 
molecules produced by known genes associated with 
autism.[31] Phosphatidylinositol-3 kinase/mammalian 
target of rapamycin/serine-threonine-specific protein 
kinase (PI3K/mTOR/AKT1) and mitogen-activated 
protein kinase downstream synaptic pathways, which 
are involved in a number of single-gene causes 
of autism, have also been found to be similar.[31-35] 
The consequences of these genetic alterations are 
extremely complicated and reliant on feedback 
mechanisms, crosstalk between signaling pathways, 
and the participation of other genes’ genetic 
regulators. According to these findings, synaptic 
dysregulation caused by hypo- or hyperconnectivity 
as a result of altered genetic makeup and impacted 
protein molecules is assumed to be the cause of 
autism.[36-41]

In conclusion, PMS presents a wide range of clinical 
features and neurological characteristics. Due to these 
clinical features, it can affect many organs of the body. 
Loss of the SHANK3 gene parallels autistic behaviors. 
It causes PMS, which causes developmental delay, 
difficulty in speech, delayed speech development, 
and hypotonia. Since several SHANK3 mutations have 
been described in a specific phenotypic group of 
ASD patients, SHANK3 is strongly suspected to be 
involved in ASD. As medicine and technology have 
advanced, it has enabled more detailed research 
and understanding of the 22q13 haploid deficiency 
and SHANK3. It will be possible to ascertain whether 
the severity of clinical phenotypes and particular 
PMS manifestations are related to additional genetic 
differences as a result of improved knowledge about 
the variety and type of genetic defects thanks to 
genetic testing and a large database of genetic 
samples. 
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