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Influence of Cholesterol on Cancer Progression 

Tuğçe Uygur1, Züleyha Pestil2, Oytun Erbaş1

ABSTRACT

Cholesterol is a form of lipids, just as fats are and an essential 
component of cell membranes that are required for the 
synthesis of fat-soluble vitamins and steroid hormones 
such as estradiol, cortisol, progestins and testosterone, 
and bile acids. High-density lipoprotein and low-density 
lipoprotein (LDL), which are the most commonly known 
types of cholesterol, cause various diseases in the body. The 
LDL cholesterol raises the risk of breast, prostate, testicular, 
uterine, ovarian, and colorectal cancers and promotes 
cancer by activating several signaling pathways. This review 
discusses the effect of cholesterol on the progression of 
cancer.
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Cancer, which originates from the Greek word 
karkinos, was found in mummies during the ancient 
Egyptian period (1600 BC). It is a disease that spreads 
worldwide.[1,2] According to 2017 data, a total of 
180.288 cancer cases developed in Turkey.[3] Cancer, 
which occurs with the uncontrolled division and 
proliferation of cells, is a disease that occurs under the 
influence of genetic and environmental conditions.[4,5]

Cholesterol is an essential component of life and 
is maintained by a number of factors, including 
intracellular cholesterol levels, cholesterol synthesis, 
uptake, metabolism, and transport. Studies have 
shown that cholesterol plays a vital role in the 
formation and development of cancer and that high 
levels of cholesterol in the blood are associated with 
some types of cancer.[6-8]

CHOLESTEROL
Cholesterol, which is a type of fat; takes part 

in the production of hormones and vitamin D, cell 
membrane functions. Cholesterol also serves as a 
precursor to various steroid hormones and is involved 
in intracellular signal transduction. As one of its 
functions in cell signaling, recent evidence suggests 
that cholesterol plays an important role in regulating 

angiogenesis. It is produced by consuming milk and 
meat products in the body in the brain, adrenal 
glands, reproductive organs, intestine, and liver. In 
the cell, cholesterol is synthesized with the help of 
enzymes in the cytoplasm endoplasmic reticulum.[9-13]

Cholesterol biosynthesis occurs with the help of 
microsomes and peroxisomes, a mechanism called 
the Bloch and Kandutsch-Russell pathways, which 
involve a series of enzymatic reactions.[14-17] Several 
steps are required to convert acetyl coenzyme 
A (acetyl-CoA) into cholesterol, which is then 
involved in numerous biological roles. These steps 
include; acyl-CoA: cholesterol acyltransferase 
(ACAT), 3-hydroxy-3-methylglutaryl coenzyme 
A reductase (HMGCR), sterol O-acyltransferase, 
oxidative squalene cyclase (OSC), acyl-coenzyme 
A, sterol-O-Acyl transferases and adenosine 
triphosphate (ATP)-binding cassette transporter A-1. 
In vertebrate cells, lipid homeostasis is regulated 
by a set of membrane-bound transcription factors, 
sterol-regulatory element-binding proteins 
(SREBPs).[18]

The enzyme HMGCR is the rate-limiting enzyme 
of the cholesterol synthesis pathway.[19,20] ACAT1 is 
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a tetrameric enzyme that converts two acetyl-CoA 
molecules into acetyl-CoA and CoA in the ketogenesis 
pathway.[21,22] Cholesterol synthesis begins with the 
two-carbon acetate group of acetyl-CoA.[23]

Two moles of acetyl-CoA combine 
to form acetoacetyl-CoA, followed by 
3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA). In the 
following steps, cholesterol synthesis is completed 
with approximately 30 reactions that take place as a 
result of three stages. From the HMG-CoA formed in the 
first stage, mevalonate, the precursor of cholesterol, 
is formed by means of the HMG-CoA reductase 
enzyme. Here, the formation of mevalonate from 
HMG-CoA is the rate-limiting step, and HMG-CoA, 
the enzyme that catalyzes this reaction, acts as the 
reductase rate-limiting enzyme. In the second stage, 
squalene is formed from mevalonate. In the third 
stage, squalene follows two alternative pathways 
to create cholesterol, the Bloch pathway, and the 
Kandutsch–Russell pathway, and the cholesterol 
biosynthesis is completed.[23,24]

When cholesterol is in excess, it is stored as 
cholesterol esters (formed by the combination of 
fatty acids). Since it is insoluble in water, it binds to 
lipoproteins and circulates in the blood with the help 
of lipoproteins.[13] Both genetic and environmental 
factors affect the number of lipids and lipoproteins 
in the blood. Lipid concentrations increase as people 
age.[18]

Lipoproteins are macromolecular structures 
that contain a shell and nucleus consisting of 
phospholipids and free cholesterol. The polar part 
allows cholesterol to circulate in the blood as water 
communicates.[25]

Types of lipoproteins: low-density lipoprotein 
(LDL) (β mobility), very-low-density lipoprotein 
(VLDL;preβ mobility) and high-density lipoprotein 
(HDL; α mobility), chylomicrons.[26,27] High-density 
lipoprotein and LDL are the most widely known 
types of cholesterol.[27,28] Cholesterol is involved in 
the production of bile salts, and its overproduction 
causes excess fat absorption into the body.

Chylomicrons transport cholesterol from the 
small intestine to the liver. The majority of this 
transported cholesterol is taken in through food. 
When the amount decreases, it is produced in the 
liver. In order for the produced cholesterol and other 
lipids to be delivered to other tissues in the body, it 
is secreted into the blood in very VLDL (since it does 
not dissolve in water). As the cholesterol in the VLDL 
in the blood decreases and is transferred to the cells, 

the structure and density of VLDL change, first it turns 
into intermediate-density lipoprotein (IDL) and then 
into LDL. A high amount of LDL in the blood leads to 
the accumulation of these lipoproteins on the walls 
of arterial vessels, which causes clots, heart disease, 
and stroke.[29,30]

Blood cholesterol levels are affected by obesity, 
dietary habits, blood pressure imbalances, heredity, 
lipid metabolism disorder, diabetes, smoking and 
alcohol consumption, advanced age, lack of physical 
activity, estrogen deficiency, elevated fibrinogen, 
significant brain, heart, kidney, thyroid or vascular 
disease.[31-35] 

THE RELATIONSHIP BETWEEN 
CHOLESTEROL AND CANCER

Dietary fat intake causes death in humans. 
High-fat consumption causes many chronic diseases 
such as obesity, cardiovascular diseases, some types 
of cancer, and type 2 diabetes.[36-40]

The most important features of cancer cells are 
the activation of oncogenes and the loss of tumor 
suppressors.[41] In the research, it is understood that 
cholesterol affects tumor development.[42] All types of 
fat, especially LDL, increase the risk of breast, testicular, 
uterine ovarian, and colorectal cancers.[36] Tumors 
must meet membrane biogenesis and biofunctional 
requirements in order to multiply. Cholesterol is also 
necessary for the membrane.[43]

An excess of lipids in the body increases the levels 
of reactive oxygen species (ROS), which causes the 
oxidation of intracellular LDL to oxidized low-density 
lipoproteins (ox-LDL). In addition, oxidative stress 
causes deoxyribonucleic acid (DNA) damage 
to carcinogenesis in cancers.[44,45] Low-density 
lipoprotein contains polyunsaturated fatty acids that 
can be oxidized by ROS (reactive oxygen species) 
and reactive nitrogen species (RNS) to produce lipid 
peroxides such as ox-LDL. Ox-LDL stimulates ROS 
production. Apolipoprotein B-100 (ApoB-100 ) is the 
protein component of LDL and is the best ligand for 
LDL receptor (LDLR). The residues of histidine, cysteine, 
tyrosine, and lysine in ApoB-100 are also oxidation 
targets of ROS and RNS, and oxidative modification of 
ApoB-100 can eliminate its function as an LDLR ligand. 
When ox-LDL are no longer recognized by LDLR, they 
can be identified and combined with scavenger 
receptors such as lectin-like oxidized LDL receptor-1 
(LOX-1), scavenger receptor A, and the cluster of 
differentiation 36 (CD36). Ox-LDL is a well-known 
biomarker for cardiovascular disease and increases 
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endothelial cell adhesion by activating oxidative stress 
and stimulating the expression of pro-inflammatory 
factors and adhesion molecules, as well as chemokines 
in vascular endothelial cells, leading to endothelial 
dysfunction. In recent years, more and more studies 
have focused on ox-LDL and cancers, and high levels 
of ox-LDL, as well as LOX-1, and CD36 have been 
found to be associated with increased risk of various 
cancers. Ox-LDL promotes epithelial-mesenchymal 
growth, and cytoplasmic transformation induces 
protective autophagy, activates inflammatories, and 
promotes the release of growth factors, cytokines, 
and other pro-inflammatory markers to stimulate 
oncogenic signals, resulting in cell mutations and 
chemotherapy resistance. Low-density lipoprotein 
may cause cancer by activating numerous signaling 
pathways; phosphatidylinositol 3-kinase/protein 
kinase B (PI3K/AKT), extracellular signal-regulated 
protein kinases (ERKs), Signal transducer and activator 
of transcription (STAT)-3, etc.[2,46-52]

The PI3K/Akt activation; PI3K family is divided into 
four classes: Three of the PI3K family phosphorylate 
lipids and one phosphorylates proteins. Class I of 
PI3K is divided into two subunits, p85 and p110. PI3K 
activation occurs by binding to the growth factor 
receptor (ERBB or epidermal growth factor (EGF). When 
PI3K is activated, the effect of p85 on p110 is reduced 
and it converts phosphatidylinositol-4,5-diphosphate 
(PIP2) to phosphatidylinositol-3,4,5-trisphosphate 
(PIP3). The increase in PIP3 (phosphatidyl inositol 
1-4-5-triphosphate) causes an increase in AKT/AKT 
and ERK. phosphoinositide-dependent kinase 1 
(PDK1) is activated by the binding of PIP3 to the 
pleckstrin homology (PH) domain at the C terminus 
of PDK1. Activated PDK1 phosphorylates AKT at 
thr/ser T308. Phosphorylation of T308 allows PDK2 to 
phosphorylate S473. Double phosphorylation of AKT 
at T308 and S473 activates AKT and stimulates cell cycle 
progression, survival, metabolism, and migration. AKT 
has three family members, AKT1, AKT2, and AKT3. 
Inactivation of AKT destroys Class I PI3K-induced 
survival. The most common PI3K mutations are E542K, 
E545K, and H104R.[53,54] PI3K/AKT regulates cancer 
cell growth by activating the mammalian target of 
rapamycin (mTOR), which can promote cholesterol 
synthesis and uptake by activating SREBPs. The 
mitogen-activated protein kinase (MAPK) pathway, 
consisting of the Ras-Raf-MEK-ERK signaling cascade 
is activated by the activation of ERBB2. Growth 
factor receptor-bound protein 2 (Grb2) contains the 
Src homology 2 (SH2) domain, which recognizes 
phosphorylated tyrosine sites in the active receptor. 
Grb2 binds to the guanine nucleotide exchange 

factor son of sevenless (SOS) through the SH3 domain. 
When the Grb2/SOS complex approaches the active 
receptor, SOS is activated and removes guanosine 
5'-diphosphate (GDP) from the inactive Ras. The 
released Ras becomes active by binding to guanosine 
triphosphate (GTP). Ras/GTP) binds to Raf-1 and 
activates it. It also activates MEK-1 and MEK-2. For Ras 
proteins to become active, they must be localized to 
the membrane after post-translational regulation. In 
resting cells, Ras proteins are inactive (Ras-GDP) and 
act as nodes for signaling pathways. They activate 
MEK, ERK-1, and ERK-2 by phosphorylating them. 
ERK activation causes changes in cell physiology, cell 
cycle control, differentiation, migration, apoptosis, 
and angiogenesis.[54,55]

STAT3 activation causes the differentiation of cells 
and the proliferation of tumor cells. Activation of 
STAT3 leads to increased levels of anti-apoptotic 
proteins such as Bcl-xL, Bcl-2, and myeloid leukemia 
cell differentiation protein 1 in cancer cells and cell 
proliferation. STAT3 phosphorylates and activates 
survivin, vascular endothelial growth factor (VEGF), 
c-myc, cyclin D1, and matrix metalloproteinase (MMP) 
and enables cell proliferation.[56-61]

High blood cholesterol is a common comorbidity 
in obesity. Its impact as a risk factor for breast cancer 
is contradictory and it is unclear whether total, LDL, or 
HDL cholesterol contributes to the disease.[62,63]          

In experimental studies, cancer cells have 
been shown to have an LDLR, They showed that 
HMG-CoA reductase HMGCR and sterol regulatory 
element-binding protein SREBPs exhibit deregulated 
transcriptional levels of several genes involved in 
cholesterol regulation and metabolism.[64-66]

Many cancer cells show high LDL receptor levels 
and increased LDL uptake.[67,68] In a breast cancer 
cell model known for its aggressive cell behavior 
(MDA-MB-231), the LDL receptor has been shown to 
be up-regulated and LDL stimulates cell migration.[69] 
Scavenger receptor-BI is also frequently overexpressed 
in tumors and is thought to contribute to increased 
HDL-cholesterol uptake in cancer cells.[67,70] In 
MDA-MB-231 cells, scavenger receptor-BI deficiency 
inhibits migration in vitro and tumor growth in 
vivo.[71] Liver X receptor (LXR) activation induced 
by 27-hydroxycholesterol accumulation promotes 
the development of highly aggressive basal breast 
carcinoma characterized by mesenchymal features.[72]

Excess fat accumulates in the liver and the 
liver enlarges due to fat accumulation and then 
inflammation begins in the fatty liver. If this situation 
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continues for a long time, scar tissue forms in the 
liver, and eventually, cirrhosis occurs. If the cirrhosis 
problem progresses, it can cause cancer.[73,74]  In a 
study, it was observed that serum cholesterol in the 
blood can cause increased expression of VEGF, MMP-2, 
and MMP-9 by activating the nuclear factor kappa B 
signaling pathway in hepatocellular carcinoma cells 
and cholesterol can cause inflammation.[6,75]  

Studies have shown that the development of 
colorectal cancer is closely related to high fat intake 
in the diet and especially to cholesterol levels.  It 
has been understood that high cholesterol levels 
cause colorectal cancer formation by the HMG-CoA 
mechanism.[76-79] It has been shown that LDL cholesterol 
is associated with colorectal cancer progression[79,80], 
HDL cholesterol is inversely associated with colorectal 
cancer risk[79,81], and total cholesterol and triglyceride 
levels are positively associated with increased 
colorectal cancer risk.[82-84]

The possible link between the incidence of 
pancreatic ductal adenocarcinoma (PDAC) and 
cholesterol metabolism has been demonstrated 
by epidemiologic studies showing high serum 
cholesterol and obesity as risk factors.[84,85] 
Rapid uptake and endogenous biosynthesis of 
cholesterol and phospholipids are a feature of 
oncogene-transformed cells.[85,86] PDAC causes 
increased expression of cholesterol synthesis 
genes, although this is not certain.[87] Cholesterol, 
its precursors, and/or metabolites may modulate 
the oncogenic functions of tumor cells to alter the 
disease course in early PDAC stages. For this reason, 
metabolites of cholesterol and other components of 
the cholesterol biosynthetic pathway are known to 
influence progression in some types of cancer.[72,88] 
A study examining the causal relationship between 
endogenous cholesterol metabolism and PDAC 
development and differentiation revealed that a 
metabolically determined PDAC differentiation 
duality is mediated by cholesterol-sensitive 
SREBP1-dependent transforming growth factor 
beta (TGFβ) expression, TGFβ receptor activation, 
and induction of a canonical Smad2/3 signaling 
pathway.[89]

Membrane rafts are heterogeneous and dynamic 
domains characterized by tight packing of lipids.[90] 
Signals critical for the survival and proliferation of 
prostate cancer (PCa) cells are transmitted through 
lipid rafts.[90,91] Studies have shown that some proteins 
critical for PCa growth and survival are regulated by 
lipid rafts and that changes in membrane cholesterol 
measurably affect the signals generated by these 

molecules.[92-94] Epidermal growth factor receptor 
(EGFR) in the lipid rafts of PCa cells is much more 
active and much more highly phosphorylated than 
the cohort of receptors in non-raft membranes, 
and cholesterol targeting by EGFR also disrupts 
downstream effectors.[95,96]  The study also showed 
that a subpopulation of Akt present in rafts exhibits 
very different substrate specificity than non-raft 
Akt. This raft-localized Akt is inhibited by decreased 
cholesterol levels.[97] Signaling by LXRs down-regulates 
the level of phosphorylated Akt present in rafts, 
leading to PCa cell apoptosis, a process precipitated 
by LXR-stimulated cholesterol efflux and reversed 
by exogenous cholesterol addition. Collective data 
suggest that cholesterol regulates lipid dynamics, 
which in turn affects vital signaling pathways and 
acts to protect cells from apoptosis through the 
effects of increased cholesterol on lipids.[98,99]

Fatty acids and cholesterol are the two main types 
of lipids. Multiple fatty acids and enzymes involved 
in fatty acid metabolisms, such as fatty acid-binding 
protein 4, CD36, and stearoyl-CoA desaturase 1, 
significantly increase ovarian cancer proliferation, 
survival, drug resistance, and metastasis.[100-104] 

Proteins and enzymes highly expressed in cholesterol 
metabolism induce ovarian cancer progression; 
cholesterol and its derivatives also cause proliferation 
and chemo-resistance in ovarian cancer.[105-110] 

In conclusion, the effect of LDL on the body causes 
various diseases. Excess LDL can cause heart disease, 
stroke, and cancer.  It activates various signaling 
pathways and increases the risk of breast, prostate, 
testicular, uterine ovarian, and colorectal cancers.In 
addition, HDL eliminates cholesterol and tumor cells, 
which inhibits the growth and spread of tumors.
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